Những câu hỏi liên quan
TP
Xem chi tiết
MB
18 tháng 4 2022 lúc 22:02

Ta có: x2 – 2x + 1 = 6y2 -2x + 2

=> x2 – 1 = 6y2 => 6y2 = (x-1).(x+1) chia hết cho 2 , do   6y2 chia hết cho 2 

Mặt khác x-1 + x +1 = 2x chia hết cho 2 =>   (x-1) và (x+1) cùng  chẵn hoặc cùng lẻ.

Vậy (x-1) và (x+1) cùng  chẵn  => (x-1) và (x+1) là hai số chẵn liên tiếp

 (x-1).(x+1) chia hết cho 8 => 6y2 chia hết cho 8  =>  3y2 chia hết cho 4  => y2 chia hết cho 4  => y chia hết cho 2 

  y  =  2  ( y là số nguyên tố) , tìm được x = 5. 

Chúc học tốt!

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
DV
27 tháng 6 2017 lúc 10:05

bây giờ mới lên lớp 6 mà tự nhiên cho bài lớp 7

Bình luận (0)
TL
7 tháng 11 2018 lúc 23:05

DỄ MÀ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
VT
28 tháng 10 2021 lúc 16:58

hả, sao

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
Xem chi tiết
H24
12 tháng 2 2020 lúc 15:20

\(x^2-6y^2=1\)

\(+,y=2\Rightarrow x^2=4.6+1=25\Rightarrow x=5\left(\text{thỏa mãn}\right)\)

\(+,y>2\Rightarrow x>2\Rightarrow x;y\text{ lẻ }\Rightarrow x^2;y^2\text{ chia 4 dư 1}\Rightarrow1\text{ chia 4 dư:}1-2=-1\left(\text{vô lí}\right)\)

Vậy: x=5;y=2

Bình luận (0)
 Khách vãng lai đã xóa
ZN
12 tháng 4 2020 lúc 16:34

x=5 y=2

Bình luận (0)
 Khách vãng lai đã xóa
VN
12 tháng 4 2020 lúc 16:36

x=5 y=2

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NM
Xem chi tiết
H24
10 tháng 12 2021 lúc 9:47

Tham khảo:

Nhưng có vẻ không đúng yêu cầu đề lắm :<

undefined

undefined

undefined

Bình luận (4)
H24
10 tháng 12 2021 lúc 9:48

\(\left(x^2-y^2\right)^2=4xy+1\)

<=> \(\left(x^2+y^2\right)^2=4x^2y^2+4xy+1\)

<=> \(\left(x^2+y^2\right)^2=\left(2xy+1\right)^2\)

<=> \(x^2+y^2=2xy+1\)

<=> \(\left(x-y\right)^2=1\)

<=> \(\left[{}\begin{matrix}x=y+1\\x=y-1\end{matrix}\right.\) mà x,y là SNT <=> \(\left[{}\begin{matrix}\left(x;y\right)=\left(3;2\right)\\\left(x;y\right)=\left(2;3\right)\end{matrix}\right.\)

Bình luận (0)
LA
Xem chi tiết
NL
24 tháng 12 2021 lúc 21:23

\(\Leftrightarrow x^2-1=6y^2\)

Do \(6y^2\) chẵn và 1 lẻ \(\Rightarrow x^2\) lẻ \(\Rightarrow x\) lẻ \(\Rightarrow x=2k+1\)

\(\Rightarrow\left(2k+1\right)^2-1=6y^2\)

\(\Rightarrow4\left(k^2+k\right)=6y^2\)

\(\Rightarrow2\left(k^2+k\right)=3y^2\)

Do 2 chẵn  \(\Rightarrow3y^2\) chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn

Mà y là SNT \(\Rightarrow y=2\)

Thay vào pt đầu: 

\(x^2+1=6.2^2+2\Rightarrow x=5\)

Vậy (x;y)=(5;2)

Bình luận (0)
PP
25 tháng 3 2022 lúc 15:30

Ta có: \(x^2-1=2y^2\)

Vì \(2y^2\) là số chẵn ⇒\(x^2\) là số lẻ ⇒ x là số lẻ

⇒ x= 2k+1

Ta có: \(\left(2k+1\right)^2-1=2y^2\)

⇒ \(4\left(k^2+k\right)=2y^2\)

\(2\left(k^2+k\right)=y^2\)

Vì 2 là số chẵn ⇒ \(y^2\) là số chẵn ⇒ y là số chẵn 

Mà y là số nguyên tố ⇒ y = 2

Ta lại có: \(x^2-1=2.2^2\)

⇒ \(x^2-1=8\)

\(x^2=8+1=9\)

⇒ x= -3 hoặc 3 

Vì x là số nguyên tố nên x =3

Vậy x=3, y=2

Bình luận (0)
KN
Xem chi tiết