giải hệ pt \(\int^{y^2-xy+1=0}_{x^2+2x+y^2+2y+1=0}\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3-30=0\\x^2y+x\left(1+y+y^2\right)+y-11=0\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}3xy+2y=5\\2xy\left(x+y\right)+y^2=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)
TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)
Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)
TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)
2 câu dưới hình như em hỏi rồi?
giải hệ pt :
a, \(\left\{{}\begin{matrix}3y=\dfrac{y^2+2}{x^2}\\3x=\dfrac{x^2+2}{y^2}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^2y+xy^2+x-5y=0\\2xy+y^2-5y+1=0\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy+2y+x=2\\2x^2-y^2-2y-2=0\end{matrix}\right.\)
ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html
b.
Với \(xy=0\) không là nghiệm
Với \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)
\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)
\(\Leftrightarrow5-x^2=5x-2x^2\)
\(\Leftrightarrow...\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\2x^2-\left(y+1\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\6x^2-3\left(y+1\right)^2=3\end{matrix}\right.\)
\(\Rightarrow5x^2-x\left(y+1\right)-4\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(5x+4\left(y+1\right)\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=-\dfrac{5x+4}{4}\end{matrix}\right.\)
Thế vào 1 trong 2 pt ban đầu...
Giải hệ pt:
a)(x+√(x^2+4))(y+√(y^2+1))=2 và 27x^6=x^3-8y+2
b)(8x-3)√(2x-1) -y-4y^3=0 và 4x^2-8x+2y^3+y^2-2y+3=0
c) x(1+y-x)=-2y^2-y và x(√2y -2)=y(√(x-1)-2)
d) √(x+2y)+√(2x-y)+x^2y=√x+√3y+xy^2 và 2(1-y)√(x^2+2y-1)=y^2-2x-1
e)(y-2x+√y-√x)/√xy +1=0 và √(1-xy) +x^2-y^2=0
CÁC BẠN ƠI..GIÚP MK VS Ạ...MAI MK HOK R...CẢM ƠM TRƯỚC Ạ...☺️☺️☺️
giải hệ pt:
\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
Với \(xy=0\) là nghiệm
Với \(xy\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}y-\dfrac{2}{x}+\dfrac{3x}{y}=0\\\dfrac{y}{x}+x+\dfrac{2}{y}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y-\dfrac{2}{x}=-\dfrac{3x}{y}\\x+\dfrac{2}{y}=-\dfrac{y}{x}\end{matrix}\right.\)
\(\Rightarrow\left(y-\dfrac{2}{x}\right)\left(x+\dfrac{2}{y}\right)=3\)
\(\Leftrightarrow xy-\dfrac{4}{xy}-3=0\)
\(\Rightarrow\left(xy\right)^2-3xy-4=0\Rightarrow\left[{}\begin{matrix}xy=-1\\xy=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{y}\\x=\dfrac{4}{y}\end{matrix}\right.\) thế vào \(y^2+x^2y+2x=0\)
\(\Rightarrow\left[{}\begin{matrix}y^2+\dfrac{1}{y}-\dfrac{2}{y}=0\\y^2+\dfrac{16}{y}+\dfrac{8}{y}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y^3=1\\y^3=-24\end{matrix}\right.\)
\(\Leftrightarrow...\)
giải hệ pt: \(\left\{{}\begin{matrix}2x+2y+1-\dfrac{1}{xy}=0\\2x^2=y+\dfrac{1}{y}\end{matrix}\right.\)
Giải hệ: \(\int^{2x^2+x-\frac{1}{y}=2}_{y-y^2x-2y^2+2=0}\)
nhìn mà chóng mặt nhưng để mk thử xem
ngu
\(\int^{\text{2x2+x−1y=2y−y2x−2y2=−2}}_{\text{2x2+x−1y=2y−y2x−2y2=−2}}\)
ĐKXĐ: y≠0
\(\int^{2x^2+x-\frac{1}{y}\left(1\right)=2}_{y-y^2x-2y^2=-2}\)
Do y≠0 nên chia phương trình 2 cho y2
<=>\(\int^{\text{2x2+x−1y=2}}_{1y−x−2=−2y2}\)<=>\(\int^{2x^2+x-\frac{1}{y}=2}_{2+x-\frac{1}{y}=\frac{2}{y^2}}\)
Trừ 2 phương trình, rút gọn, ta được:
x2−1=1−\(\frac{1}{y^2}\)
<=>\(\frac{1}{y}=\sqrt{2-x^2}\)
Thay vào (1), ta được phương trình sau:
\(2x^2+x-\sqrt{2-x^2}=2\)
<=>\(-2\left(2-x^2\right)+x+2=\sqrt{2-x^2}\left(2\right)\)
Đặt \(a=\sqrt{2-x^2}\)
=>a2=2−x2
=>a2+x2=2
Thay vào (2), ta được phương trình:
2a2+x+a2+x2=a
<=>x2−a2+x−a=0
<=>(x−a)(x+a+1)=0
<=>\(\int^{x-a=0}_{x+a+1=0}\)
TH1: x−a=0=>x=a
=>\(x=\sqrt{2-x^2}\)
=>x=±1
Với x=1, thay vào (1), tính được y=1
Với x=−1, thay vào (1), tính được y=−1
TH2:x+a+1=0=>x+1=-a
=>\(x+1=-\sqrt{2-x^2}\)
ĐK: x≤\(-\sqrt{2}\)
\(x+1=-\sqrt{2-x^2}\)
<=>x2+2x+1=2-x2
<=>2x2+2x-1=0
<=>\(\int^{\frac{\sqrt{3}-1}{2}\left(loại\right)}_{\frac{-\sqrt{3}-1}{2}\left(loại\right)}\)
KẾT LUẬN: Hệ phương trình có 2 cặp nghiệm (x;y):(1;1),(−1;−1)
giải hệ pt :
\(\left\{{}\begin{matrix}x^3-y^3+2x^2+y^2+3=0\\x^2+2y^2+4x-4y+1=0\end{matrix}\right.\)
Cộng vế:
\(x^3-y^3+3x^2+3y^2+4x-4y+4=0\)
\(\Leftrightarrow\left(x+1\right)^3-\left(y-1\right)^3+x-y+2=0\)
\(\Leftrightarrow\left(x-y+2\right)\left(x^2+y^2+xy+x-y+2\right)=0\)
\(\Leftrightarrow\left(x-y+2\right)\left[\left(x+\dfrac{y}{2}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2+1\right]=0\)
\(\Leftrightarrow y=x+2\)
Giải hệ PT:
\(\left\{{}\begin{matrix}\left(x^2+x\right)y^2-4y^2+y+1=0\\xy+x^2y^2+x^3y^3-y^3+1=0\end{matrix}\right.\)
Giải các hệ pt và các pt sau:
1. (x+1)(y-1)=xy+4 (1)
(2x-4)(y+1)=2xy+5(2)
2. \(x^2+x-2\sqrt{x^2+x+1}+2=0\)
1.
HPT \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)
Vậy.............
2.
ĐKXĐ: $x\in\mathbb{R}$
$x^2+x-2\sqrt{x^2+x+1}+2=0$
$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$
$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$
$\Rightarrow \sqrt{x^2+x+1}=1$
$\Rightarrow x^2+x=0$
$\Leftrightarrow x(x+1)=0$
$\Rightarrow x=0$ hoặc $x=-1$