Những câu hỏi liên quan
H24
Xem chi tiết
TA
14 tháng 2 2016 lúc 22:22

Có 2 trường hợp : 

Trường hợp thứ nhất : x = -16

                                 y=71/2

Trường hợp thứ 2: x = 6

                            y=2

Bình luận (0)
GN
Xem chi tiết
TL
Xem chi tiết
TL
10 tháng 4 2017 lúc 22:10

giúp mình câu này với mình sắp thi rồi

Bình luận (0)
MT
Xem chi tiết
NL
23 tháng 8 2021 lúc 15:49

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+\left(z^2-6z+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

Bình luận (0)
CC
Xem chi tiết
AK
1 tháng 3 2018 lúc 23:27

Ta có : 

x + 2xy - 4y = 14

=> x + 2xy - 4y - 2 = 12

=> ( x - 2 ) + ( 2xy - 4y ) = 12

=>  (  x - 2 )  + 2y . ( x - 2 ) = 12

=>      ( x - 2 ) . ( 2y + 1 )    = 12

Do x , y thuộc z => x - 2 thuộc z , 2y + 1 thuộc z 

=> x - 2 , 2y + 1 thuộc Ư ( 12 ) 

=> x - 2 , 2y + 1 thuộc { 1 ,   -1 , -12 , 3 , 4 , -4 , -3 , -6 , -2 , 6 , 2 } 

 

Bình luận (0)
HH
Xem chi tiết
VH
27 tháng 7 2023 lúc 22:24

\(A=\dfrac{1}{x}+\dfrac{1}{4y}=\dfrac{4}{4x}+\dfrac{1}{4y}=\dfrac{2^2}{4x}+\dfrac{1^2}{4y}\)

Áp dụng BĐT Cauchy schwart, ta có:

\(A=\dfrac{2^2}{4x}+\dfrac{1^2}{4y}\ge\dfrac{\left(2+1\right)^2}{4\left(x+y\right)}=\dfrac{9}{4.2}=\dfrac{9}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{4x}=\dfrac{1}{4y}\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2x}=\dfrac{1}{4y}\\x+y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=4y\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y\\x+y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)

Vậy, GTNN của \(A=\dfrac{9}{8}\Leftrightarrow\left(x,y\right)=\left(\dfrac{4}{3},\dfrac{2}{3}\right)\)

Bình luận (1)
VH
28 tháng 7 2023 lúc 9:17

Áp dụng BĐT Cosi cho 2 cặp số dương là  \(\dfrac{1}{x};\dfrac{9}{16}x\) và \(\dfrac{1}{4y};\dfrac{9}{16}y\) , ta có:

\(\dfrac{1}{x}+\dfrac{9}{16}x\ge2\sqrt{\dfrac{1}{x}.\dfrac{9}{16}x}=2.\dfrac{3}{4}=\dfrac{3}{2}\)

\(\dfrac{1}{4y}+\dfrac{9}{16}y\ge2\sqrt{\dfrac{1}{4y}.\dfrac{9}{16}y}=2.\dfrac{3}{8}=\dfrac{3}{4}\)

Cộng vế theo vế ta được: \(\dfrac{1}{x}+\dfrac{1}{4y}+\dfrac{9}{16}\left(x+y\right)\ge\dfrac{3}{2}+\dfrac{3}{4}=\dfrac{9}{4}\)

\(\Leftrightarrow A+\dfrac{9}{16}.2\ge\dfrac{9}{4}\Leftrightarrow A\ge\dfrac{9}{4}-\dfrac{9}{8}=\dfrac{9}{8}\)

Dấu bằng xảy ra \(\Leftrightarrow\left(x,y\right)=\left(\dfrac{4}{3};\dfrac{2}{3}\right)\)

Bình luận (1)
TL
Xem chi tiết
HT
Xem chi tiết
HP
7 tháng 4 2017 lúc 17:01

bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra

bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1

Áp dụng bđt AM-GM , ta có P >/  4 =>minP=4

đẳng thức xảy ra khi đồng thời  x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé

Bình luận (0)
NL
Xem chi tiết

Gợi ý nhá

Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.

b)  Bạn chỉ cần cho tử và mẫu mũ 3 lên.  theé là dễ r

Bình luận (0)
H24
27 tháng 10 2018 lúc 20:33

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

tự tính tiếp =)

Bình luận (0)