tam giac ABC co AB=6cm,AC=6cm ,B=45,phan giac AD(D thuoc BC). khi do AD=
Cho tam giac ABC vuong tai A co AB=6cm, AC=8cm. Duong cao AH va phan giac BD cat tai I ( H thuoc BC D thuoc AC)
a) Tinh do dai AD,DC
b) tam giac AB2= BH.BC
c) cm tam giac ABI dong dang CBD
d) cm IH/IA= AD/DC
a: BC=10cm
Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)
Do đó: AD=3cm; CD=5cm
b: Xét ΔABC vuong tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
c: Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)
\(\widehat{BAI}=\widehat{BCD}\)
Do đó: ΔABI\(\sim\)ΔCBD
cho tam giac ABC can tai A co AB = AC = 6cm ,BC=4cm . Cac dg phan giac BD va CE cat nhau tai I, E thuoc AB , D thuoc AC
1, Tinh do dai AD,ED
2, C/M tam giac ADB dong dang tam giac AEC
3,C/m IE.CD=ID.BE
4. Cho diện tích tam giác ABC =6cm2 .tính diện tích tam giác AED
câu 1
ta có BD là phân giác tam giác ABC
suy ra AB phần BC bằng AD phần DC bằng 3 phần 2 mà AD cộng DC bằng 6
suy ra AD bằng 6 nhân 3 chia 5 bằng 18 phần 5
xét tam giác ABD và tam giác ACE có
góc A chung
góc ABD bằng góc ACE
vậy tam giác ABD đồng dạng tam giác ACE (g-g)
suy ra AB phần AD bằng AC phần AE
mà góc A chung
vậy tam giác AED đồng dạng tam giác ACB(c-g-c)
suy ra AD phần ED bằng AB phần BC
thế số vào ta được ED bằng 12 phần 5
câu 2 lỡ chứng minh trên rùi
câu 3xét tam giác BEI và tam giác CDI có
góc EBI bằng góc DCI
góc EIB bằng góc DIC ( đối đỉnh )
vậy tam giác BEI đồng dạng tam giác CDI (g-g)
suy ra BE phần IE bằng CD phần ID
tương đương IE nhân CD bằng ID nhân BE
câu cuối
ta có tam giác AED phần tam giác ABC bằng k bình phương
Tam giác AED phần tam giác ABC bằng AD phần AB tất cả bình phương
tương đương AD bình chia cho AB bình băng 9 phần 25 tức là AD chiếm 9 phần AB chiếm 25 phần
ta lấy 6 nhân 9 chia 25 bằng 54 phần 25
cho tam giac ABC can tai A co AB = AC = 6cm ,BC=4cm . Cac dg phan giac BD va CE cat nhau tai I, E thuoc AB , D thuoc AC
1, Tinh do dai AD,ED
2, C/M tam giac ADB dong dang tam giac AEC
3,C/m IE.CD=ID.BE
4. Cho diện tích tam giác ABC =6cm2 .tính diện tích tam giác AED
Chon tam giac ABC co phan giac trong AD( D thuoc BC). M la trung diem AB. Doan AD cat M tai I. Tinh dien tich tam giac ACI khi AB = 5cm, AC = 5cm, BC = 7cm.
1) Cho tu giac ABCD co AB=2,5cm; AD=4cm; BD=5cm; BC=8cm; CD=10cm. CMinh ABCD la hinh thang
3) Cho tam giac ABC co AB=4cm, D thuoc AC, AD=2cm, DC=6cm. Biet goc A=100, goc B-C=20. Tinh goc ABD
cho tam giac ABC vuong tai A,AB=8cm,AC=6cm,AD la tia phan giac cua goc A voi D thuocBC
a,tinh DB/DC
b,tinh BC, tu do tinh DC, biet DB=6cm
a) DB/DC = AB/AC = 8/6 = 4/3
b) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{8^2+6^2}\)= 10 cm
DB/DC = 4/3 => DB = 4/3 DC
DB + DC = BC = 10 cm => 7/3 DC = 10 cm => DC = 30/7 cm
cho tam giac ABC co AB=6cm,AC=9cm,phan giac AD,duong trung truc AD cat AC tai E,tinh DE
1.Cho tam giac ABC,AD la tia phan giac cua goc BAC .Chung minh dien tich tam giac ABD/dien tich tam giac ACD=AB/AC
3.Cho tam giac ABC co goc BAC=90do va AB=8cm BC=10cm,AD la tia phan giac goc BAC(D thuoc BC
tinh DB VA DC
Cho tam giac ABC vuong tai B duong phan giac AD. Qua trung diem E cua AD, ve duong thang vuong goc voi AD cat AB tai F, tam giac ABD dong dang tam giac AEF
Biet AB = 6cm Ac = 10cm tinh do dai BD CD
ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BC^2=10^2-6^2=64\)
=>\(BC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}\)
mà BD+CD=BC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{BD+CD}{3+5}=\dfrac{8}{8}=1\)
=>\(BD=3\cdot1=3\left(cm\right);CD=5\cdot1=5\left(cm\right)\)