Những câu hỏi liên quan
NA
Xem chi tiết
PA
Xem chi tiết
NT
21 tháng 2 2022 lúc 11:56

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

Bình luận (0)
UT

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

Bình luận (0)
VD
19 tháng 12 2024 lúc 19:55

với p=2ta có

p+2=2+2=4(loại)

với p=3ta có

p+10=3+10=13

p+20=3+20=23

suy ra p=3 là hợp lí

với p>3 thì p có dạng là 3k=1 và 3k=2

với p=3k+1 ta có

p+20=3k+1+20=3k+21(loại)

với p=3k=2 ta có 

p+10=3k+2+10=12(loại) 

Vập p = 3

Nhớ tick cho mình nhé!

Bình luận (0)
DN
Xem chi tiết
NH
16 tháng 4 2017 lúc 12:30

Do \(p\) là số nguyên tố \(>3\) nên :

\(\Rightarrow\left[{}\begin{matrix}p=6k+1\\p=6k+5\end{matrix}\right.\) \(\left(k\in N\right)\)

+) Với \(p=6k+5\) thì :

\(p+4=\left(6k+5\right)+4=6k+9⋮3\) \(\left(loại\right)\) \(\rightarrow\) Do \(p+4\) là số nguyên tố

\(\Rightarrow p=6k+1\).Vậy khi đó :

\(p+8=\left(6k+1\right)+8=6k+9⋮3\) (thỏa mãn \(p+8\) là hợp số )

\(\Rightarrowđpcm\)

~ Học tốt ~

Bình luận (0)
RS
Xem chi tiết
CT
25 tháng 11 2017 lúc 20:20

p thuộc 1 trong 3 trường hợp:p=3k

                                           p=3k+1

                                           p=3k+2

Vì p là số nguyên tố lớn hơn 3=>p ko bằng 3k

=> p thuộc 1 trong 2 trường hợp:p=3k+1

                                                p=3k+2

Nếu p=3k+2=>p+4=3k+2+4

                            =3k+6

 Vì 3kchia hết cho 3;6 chia hết cho 3

=>p ko thể bằng 3k+2

=>p=3k+1

Với p=3k+1=>p+8=3k+1+8

                 =3k+9

Vì 3k chia hết cho 3;9 chia hết cho 3

=> p+8 là hợp số.

Bình luận (0)
TC
Xem chi tiết
KS
Xem chi tiết
ZD
25 tháng 11 2015 lúc 20:31

:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1.

Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

Bình luận (0)
TH
25 tháng 11 2015 lúc 20:32

  Câu 1:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 
Câu 2: chắc có vấn đề ... đã nguyên tố còn chia hết cho 6 
Câu 3: 3 là số nguyên tố thỏa mãn yêu cầu bài toán, ta cần c/m với các số nguyên tố p> 3 không có số nào thỏa mãn yêu cầu: 
số p có dạng 3k+1 hoặc 3k+2 (nếu có dạng 3k sẽ chia hết cho 3) 
Nếu p có dạng 3k + 1 thì p+2 chia hết cho 3 nên không thỏa mãn 
Nếu p có dạng 3k+2 thì p+10 chia hết cho 3 nên không thỏa mãn 
Vậy chỉ có 3 là thỏa mãn yêu cầu

Bình luận (0)
NL
Xem chi tiết
ND
20 tháng 1 2018 lúc 5:04

bài này trong sách phát triển có đấy

Bình luận (0)
NP
Xem chi tiết
H24
10 tháng 12 2015 lúc 11:02

Goi b la so nghuyen to lon hon 3  chia cho 3 xay ra 3 truong hop                                                                                                                 truong hop 1:b chia het cho 3 suy ra b khong phai la so nghuyen to    (khong duoc)                                                                                  truong hop 2 :b chia cho 3 du 1    (duoc                                                                                                                                                  truong hop 3:b cia cho 3 du 2     (duoc)

Bình luận (0)
H24
24 tháng 6 2022 lúc 16:19

b) vì p là số nguyên tố>3(gt)

=>p có dạng 3k+1 howacj 3k+2

Nếu p=3k+2

=> p+4=3k+6 ⋮ 3

mà p+4 là số nguyên tố>3(do p>3)

=>p+4=3k+6 không thỏa mãn p+4 là số nguyên tố

Nếu p=3k+1

=> p+4=3k+5 (hợp lí)

vậy p+8 là hợp số

=>p+8=3k+9 ⋮ 3

=>p+8 là hợp số

c)vì p là số nguyên tố>3(gt)

=>p lẻ =>(p-1)(p+1) là tích 2 số chẵn liên tiếp

g/s với kϵN ta có 2k(2k+2)là tích 2 chẵn liên tiếp

2k(2k+2)=4k(k+1)

với kϵN ta có k(k+1)là tích 2 số tự nhiên liên tiếp

=> k(k+1)⋮2

=>4k(k+1)⋮8

=>tích 2 số tự nhiên liên tiếp luôn chia hết cho 8

=>(p-1)(p+1) ⋮ 8 (1)

ta có p-1; p; p+1 là 3 số tự nhiên liên tiếp

=>(p-1)p(p+1)⋮3

mà p là số nguyên tố>3(gt) => p không chia hết cho 3

=> (p-1)(p+1) ⋮ 3 (2)

từ (1),(2) kết hợp với 3; 8 là 2 số nguyên tố cùng nhau

=> (p-1)(p+1) ⋮ (3.8)

=> (p-1)(p+1) ⋮ 24

Bình luận (0)
TB
Xem chi tiết
DS
28 tháng 8 2016 lúc 23:26

Vì p là số nguyên tố và p lớn hơn 3 chắc chắn p có dạng:3k+1;3k+2.

Với p=3k+2:

p+4=3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.(là hợp số,loại)

Vậy p chỉ có dạng 3k+1.

Thử với p+8:

3k+1=3k+1+8=3k+9 chia hết cho 3 và lớn hơn 3.

Vậy p+8 là hợp số khi...

Chúc bạn học tốt^^

Bình luận (0)