Ôn tập toán 6

PA

1. Tìm số nguyên tố p , sao cho các số sau cũng là số nguyên tố :

a,p+2 và p+10

b,p+10 và p+20

2.Cho 3 số nguyên tố lớn hơn 3 , trong đó số sau lớn hơn số trước là d đơn vị . Chứng minh rằng d chia hết cho 6.

3.Cho p và p+4 là các số nguyên tố (p>3) . Chứng minh ằng p+8 là hợp số

4.Cho p và 8p-1 là các số nguyên tố . Chứng minh rằng 8p+1 là hợp số

NT
21 tháng 2 2022 lúc 11:56

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

Bình luận (0)
UT

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

Bình luận (0)
VD
19 tháng 12 2024 lúc 19:55

với p=2ta có

p+2=2+2=4(loại)

với p=3ta có

p+10=3+10=13

p+20=3+20=23

suy ra p=3 là hợp lí

với p>3 thì p có dạng là 3k=1 và 3k=2

với p=3k+1 ta có

p+20=3k+1+20=3k+21(loại)

với p=3k=2 ta có 

p+10=3k+2+10=12(loại) 

Vập p = 3

Nhớ tick cho mình nhé!

Bình luận (0)

Các câu hỏi tương tự
YT
Xem chi tiết
VK
Xem chi tiết
NT
Xem chi tiết
YT
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
KL
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết