Cho tứ diện ABCD. gọi G₁, G₂ là trọng tâm ∆ABD và ∆ACD. C/m: G₁ G₂ // (ABC) G₁ G₂ // (BCD)
Cho khối tứ diện ABCD có thể tích là V. Gọi E, F, G lần lượt là trung điểm BC, BD, CD và M, N, P, Q lần lượt là trọng tâm ∆ A B C ; ∆ A B D ; ∆ A C D ; ∆ B C D . Tính thể tích khối tứ diện MNPQ theo V.
A. V 9
B. V 3
C. 2 V 9
D. V 27
Ta có:
Ta có ∆ M N P đồng dạng với ∆ B C D theo tỉ số
Dựng B ' C ' qua M và song song BC. C ' D ' qua P và song song với CD.
Chọn D.
cho hình tứ diện ABCD. Gọi M là điểm trên cạnh AD sao cho MA = 2MD
a, G là trọng tâm tam giác ABD. Chứng minh rằng: MG // (BCD)
b, H là trọng tâm tam giác ABC. Chứng minh rằng: HG // (BCD)
a: Gọi giao điểm của AG với BC là E
Xét ΔABD có
G là trọng tâm
E là giao điểm của AG với BD
Do đó: E là trung điểm của BD và AG=2/3AE
Xét ΔAHD có \(\dfrac{AG}{AE}=\dfrac{AM}{AD}=\dfrac{2}{3}\)
nên GM//ED
=>GM//BD
mà BD\(\subset\left(BCD\right)\) và GM không thuộc mp(BCD)
nên GM//(BCD)
b: Gọi giao của AH với BC là F
Xét ΔABC có
H là trọng tâm
F là giao điểm của AH với BC
Do đó: F là trung điểm của BC và AH=2/3AF
Xét ΔAGE có \(\dfrac{AH}{AF}=\dfrac{AG}{AE}=\dfrac{2}{3}\)
nên HG//FE
mà \(FE\subset\left(BCD\right)\);HG không thuộc(BCD)
nên HG//(BCD)
(Bài này làm như nào vậy mn?)
Cho tứ diện với 4 đỉnh là A, B, C, D. Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, CD, AC, BD, AD, BC; \(A_1,B_1,C_1,D_1\) lần lượt là trọng tâm các mặt BCD, ACD, ABD, ABC và G là trọng tâm tứ diện. Chọn ngẫu nhiên 5 điểm trong số 15 điểm trên. Khi đó, xác suất để 5 điểm được chọn cùng nằm trên một mặt phẳng bằng bao nhiêu?
A. 71/1001
B. 75/1001
C. 74/1001
D.10/143
(Bài này làm như nào vậy mn?)
Cho tứ diện với 4 đỉnh là A, B, C, D. Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, CD, AC, BD, AD, BC; \(A_1,B_1,C_1,D_1\) lần lượt là trọng tâm các mặt BCD, ACD, ABD, ABC và G là trọng tâm tứ diện. Chọn ngẫu nhiên 5 điểm trong số 15 điểm trên. Khi đó, xác suất để 5 điểm được chọn cùng nằm trên một mặt phẳng bằng bao nhiêu?
A. 71/1001
B. 75/1001
C. 74/1001
D.10/143
Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABD. M thuộc đoạn thẳng BC sao cho BM = 2MC. Giao tuyến của mặt phẳng (BGM) và (ACD)
\(BG\) cắt \(AD\) tại \(K\), \(BM\) cắt \(AC\) tại \(C\).
Giao tuyển của hai mặt phẳng \(\left(BGM\right)\) và \(\left(ACD\right)\) là \(CK\).
Cho tứ diện ABCD, G là trọng tâm tứ diện. Gọi G 1 là giao điểm của AG và mp(BCD), G 2 là giao điểm của BG và mp(ACD). Khẳng định nào sau đây là đúng?
A. G 1 G 2 / / A B
B. G 1 G 2 / / A C
C. G 1 G 2 / / C D
D. G 1 G 2 / / A D
Đáp án A.
Hình vẽ dễ thấy tính song song là: G 1 G 2 ∥ A B
Chứng minh
Vì G G 1 G A = G G 2 G B = 1 4 ⇒ G 1 G 2 ∥ A B
Cho tứ diện ABCD ; gọi G là trọng tâm tam giác BCD và M là trung điểm CD; I là điểm ở trên đoạn thẳng AG; BI cắt (ACD) tại J. Chọn khẳng định sai?
A. giao tuyến của (ACD) và ( ABG) là AM
B. 3 điểm A; J; M thẳng hàng
C. J là trung điểm của AM
D. giao tuyến của (ACD) và ( BDJ) là DJ
Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của AB và CD. G là trọng tâm của tam giác BCD. Tìm giao điểm của EG với (ACD)
Cho tứ diện ABCD. G là trọng tâm tam giác BCD. Tìm giao tuyến của hai mặt phẳng (ACD) và (GAB).