Những câu hỏi liên quan
VC
Xem chi tiết
ND
22 tháng 5 2021 lúc 0:15

a) Cm tamgiac ABC đồng dạng với tamgiac HBA(g.g)

=> AB/BC = BH/AB hay AB^2 = BH.HC

và cm  tamgiac ABC đồng dạng với tamgiac HAC(g.g)

=> AC/BC = HC/AC hay AC^2 = CH.BH

Bình luận (0)
 Khách vãng lai đã xóa
NL
22 tháng 5 2021 lúc 10:19

a. Xét tg vuông ABC và  tg vuông HBA có:

\(\widehat{ABH}\)chung

\(\Rightarrow\Delta ABC~\Delta HBA\)

\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}\)

\(\Rightarrow AB^2=HB.BC\)

Cmtt:\(\Delta ABC~HAC\)

\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)

\(\Rightarrow AC^2=BC.HC\)

b. lát làm tiếp nhá

Bình luận (0)
 Khách vãng lai đã xóa
NL
22 tháng 5 2021 lúc 16:27

b.Xét tg vuông ABH và tg vuông CAH có:

\(\widehat{ABH}=\widehat{HAC}\)(cùng phụ\(\widehat{BAH}\))

\(\Rightarrow\Delta ABH~\Delta CAH\)

\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=CH.BH\)

c.Chịu

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
27 tháng 3 2022 lúc 15:25

Theo Pytago tam giác ABC vuông tại A ta có 

\(AC=\sqrt{BC^2-AB^2}=4cm\)

Ta có \(S_{ABC}=\dfrac{1}{2}.AH.BC;S_{ABC}=\dfrac{1}{2}.AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\)cm 

Bình luận (0)
HT
Xem chi tiết
NT
1 tháng 7 2023 lúc 9:48

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

=>BA/BC=BH/BA

=>BA^2=BH*BC

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: Xét ΔCAM có

CK,AH là đường cao

CK cắt AH tại I

=>I là trực tâm

=>MI vuông góc AC

=>MI//AB

Xét ΔHAB có

M là trung điểm của HB

MI//AB

=>I là trung điểm của HA

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
H24
24 tháng 5 2021 lúc 18:49

Xét \(\Delta HBA\) vuông tại \(H,\Delta ABC\) vuông tại \(A:\)

\(\widehat{ABH}:Chung \) 

\(\widehat{BAC}=\widehat{BHA}=90^o \) 

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g.g\right)\)

\(\Rightarrow\dfrac{AH}{HB}=\dfrac{HC}{HA}\)

\(\Rightarrow AH^2=HB.HC\)

 

Bình luận (1)
AH
24 tháng 5 2021 lúc 23:09

Lời giải:

Xét tam giác $HBA$ và $HAC$ có:

$\widehat{BHA}=\widehat{AHC}=90^0$

$\widehat{HBA}=\widehat{HAC}$ (cùng phụ với $\widehat{BAH}$)

$\Rightarrow \triangle HBA\sim \triangle HAC$ (g.g)

$\Rightarrow \frac{HB}{HA}=\frac{HA}{HC}$

$\Rightarrow HA^2=HB.HC$

Bình luận (2)
AH
24 tháng 5 2021 lúc 23:12

Hình vẽ:

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 9 2019 lúc 15:25

a) Chứng minh được 

b) HS tự chứng minh

Bình luận (0)
H24
Xem chi tiết
NT
3 tháng 4 2023 lúc 20:39

a: Xet ΔABC vuông tại A co AH là đường cao

nên AH^2=HB*HC

b: BC=3,6+6,4=10cm

\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)

\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)

=>AC=8cm

Bình luận (0)
HC
Xem chi tiết
LT
9 tháng 6 2021 lúc 20:45

Bạn tự vẽ hình nhé

a) Xét Tg ABC và Tg HBA có:

Góc BAC = Góc AHB(=90độ)

Góc B chung

=> Tg ABC ~ Tg HBA(g.g)

=> AB/HB=BC/BA

=> AB^2=HB. BC

=> Đpcm

b) BC= BH+ HC= 4+9=13cm

Có AB^2= HB.BC (câu a)

=> AB^2= 4.13= 52

=> AB= căn 52(cm)

Có Tg ABC vuông tại A

=> AC^2= BC^2-AB^2= 13^2- 52=117

=> AC= căn 117 (cm)

Bình luận (0)
HH
Xem chi tiết
NT
9 tháng 3 2023 lúc 15:08

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot AH\cdot BC\)

=>AB*AC=AH*CB

b: Xét ΔABC vuông tại A có AH là đường cao

nên AC^2=HC*BC

c: Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

Bình luận (0)