Những câu hỏi liên quan
DT
Xem chi tiết
NL
17 tháng 5 2020 lúc 16:52

ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-\frac{3}{4}\end{matrix}\right.\)

- Với \(x\ge1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) \(\Rightarrow\) BPT vô nghiệm

- Với \(x\le-\frac{3}{4}\) hai vế không âm, bình phương:

\(4x^2-x-3\le\left(1-2x\right)^2\)

\(\Leftrightarrow4x^2-x-3\le4x^2-4x+1\)

\(\Leftrightarrow3x\le4\Rightarrow x\le\frac{4}{3}\)

\(\Rightarrow x\le-\frac{3}{4}\)

Vậy nghiệm của BPT là \(x\le-\frac{3}{4}\)

Bình luận (0)
NC
Xem chi tiết
H24
5 tháng 2 2021 lúc 10:53

\(ĐKXĐ:x\ge-\dfrac{3}{2}\)

Bất phương trình tương đương :

\(2x+3+x+2+2\sqrt{\left(2x+3\right)\left(x+2\right)}\le1\)

\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+2\right)}\le-3x-4\)

\(\Leftrightarrow4.\left(2x+3\right)\left(x+2\right)\le\left(-3x-4\right)^2\)

\(\Leftrightarrow4.\left(2x^2+7x+6\right)\le9x^2+16+24x\)

\(\Leftrightarrow x^2-4x-8\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge2+2\sqrt{3}\\x\le2-2\sqrt{3}\end{matrix}\right.\). Kết hợp với ĐKXĐ ....

P/s : E không chắc lắm .....

Bình luận (2)
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
27 tháng 9 2021 lúc 14:46

Sửa lại đề bài cho mk là: \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)

Bình luận (0)
KR
Xem chi tiết
NL
8 tháng 4 2021 lúc 21:55

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
8 tháng 4 2021 lúc 22:01

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
NH
Xem chi tiết
NL
20 tháng 1 2024 lúc 22:00

ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{2x-5}+1\right|+\left|\sqrt{2x-3}+3\right|=14\)

\(\Leftrightarrow2\sqrt{2x-5}=10\)

\(\Leftrightarrow\sqrt{2x-5}=5\)

\(\Leftrightarrow2x-5=25\)

\(\Leftrightarrow x=15\)

Bình luận (0)
H24
Xem chi tiết
H24
21 tháng 6 2021 lúc 16:39

`ĐK:x>=2`

`pt<=>sqrt{(x-1)(x-2)}+sqrt{x+3}=sqrt{x-2}+sqrt{(x-1)(x+3)}`

`<=>sqrt{x-1}(sqrt{x-2}-sqrt{x+3})-(sqrt{x-2}-sqrt{x+3})=0`

`<=>(sqrt{x-2}-sqrt{x+3})(sqrt{x-1}-1)=0`

`+)sqrt{x-2}=sqrt{x+3}`

`<=>x-2=x+3`

`<=>0=5` vô lý

`+)sqrt{x-1}-1=0`

`<=>x-1=1`

`<=>x=2(tm)`.

Vậy `x=2`.

Bình luận (0)
TH
Xem chi tiết
AM
5 tháng 2 2022 lúc 6:08

Ta có: \(\sqrt{x^2+2x+3}+\sqrt{x^2+x+2}=2x+2\)

Bình phương 2 vế ta có:

\(2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=4\left(x+1\right)^2-x^2-2x-3-x^2-x-2\) (\(x\ge-1\))

\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=4x^2+8x+4-2x^2-3x-5\)

\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=2x^2+5x-1\)\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=2x^2+5x-1\)

Bình phương 2 vế, ta được:

\(4\left(x^2+2x+3\right)\left(x^2+x+2\right)=\left(2x^2+5x-1\right)^2\) ( ĐK:\(\left[{}\begin{matrix}x\le\dfrac{-5-\sqrt{33}}{4}\\x\ge\dfrac{-5+\sqrt{33}}{4}\end{matrix}\right.\))

 

\(\Leftrightarrow4\left(x^4+x^3+2x^2+2x^3+2x^2+4x+3x^2+3x+6\right)=4x^4+20x^3+21x^2-10x+1\)

\(\Leftrightarrow4x^4+4x^3+8x^2+8x^3+8x^2+16x+12x^2+12x+24=4x^4+20x^3+21x^2-10x+1\)\(\Leftrightarrow-8x^3+7x^2+38x+23=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{23}{8}\\x=-1\left(loai\right)\end{matrix}\right.\)

Vậy nghiệm của PT là \(x=\dfrac{23}{8}\)

Bình luận (1)
XO
5 tháng 2 2022 lúc 9:20

Đặt \(\sqrt{x^2+2x+3}=a;\sqrt{x^2+x+2}=b\) ĐK : \(a;b>0\)

PT <=> a + b = 2(a2 - b2

<=> a + b = 2(a - b)(a + b)

<=> (a + b)(2a - 2b - 1) = 0

<=> \(\left[{}\begin{matrix}a+b=0\\2a=2b+1\end{matrix}\right.\Leftrightarrow2a=2b+1\left(\text{vì a ; b > 0}\right)\)

Khi đó \(2\sqrt{x^2+2x+3}=2\sqrt{x^2+x+2}+1\)

\(\Leftrightarrow4\left(x^2+2x+3\right)=4\left(x^2+x+2\right)+4\sqrt{x^2+x+2}+1\)

<=> \(4\sqrt{x^2+x+2}=4x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}16\left(x^2+x+2\right)=16x^2+24x+9\\x\ge-\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x=23\\x\ge-\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow x=\dfrac{23}{8}\)

Bình luận (0)