(x6 - 2x5 + 2x4 + 6x3 - 4x2) : 6x2
Tính giá trị của đa thức P(x)= x6-6x5+6x4-6x3+6x2-6x+1 tại x=5
\(P\left(x\right)=5^6-6.5^5+6.5^4-6.5^3+6.5^2-6.5+1=5^6-6\left(5^5-5^4-5^3-5^2-5\right)+1=1556\)
mình quên là k dùng máy tính bỏ túi nha
\(P\left(x\right)=x^6-6x^5+6x^4-6x^3+6x^2-6x+1\)
\(=x^6-5x^5-x^5+5x^4+x^4-5x^3-x^3+5x^2+x^2-5x-x+1\)
\(=x^5\left(x-5\right)-x^4\left(x-5\right)+x^3\left(x-5\right)-x^2\left(x-5\right)+x\left(x-5\right)-x+1\)
-Thay \(x=5\) vào P(x) ta được:
\(P\left(5\right)=5^5\left(5-5\right)-5^4\left(5-5\right)+5^3\left(5-5\right)-5^2\left(5-5\right)+5\left(5-5\right)-5+1\)\(=-5+1=-4\)
Tìm nghiệm:
a)2x4-3x3-6x2-x+2=0
b)x4-2x3+4x2-3x-1=0
Giải pt
a. X4-4x3-6x2 -4x+1=0
b 4x2 +1/x2+7=8x+4/x
C 2x4+3x3 -16x2 +3x +2=0
a, \(x^4-4x^3-6x^2-4x+1=0\)(*)
<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)
<=> \(\left(x^2-2x+1\right)^2=12x^2\)
<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)
Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)
<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)
<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)
<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)
=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)
Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)
<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)
<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm
Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)
Cho a=√2+√73√61+46√5+1a=2+761+4653+1
a) Chứng minh : a4−14a2+9=0a4−14a2+9=0
b) Giả sử f(x)=x5+2x4−14x3−28x2+9x+19f(x)=x5+2x4−14x3−28x2+9x+19
Tính f(a)
Bài 2: Cho a=3√7+5√2√4+2√3−√3a=7+5234+23−3
a) Xác định đa thức với hệ số nguyên bậc dương nhỏ nhất nhận a làm nghiệm
b) Giả sử f(x)=3x6+4x5−7x4+6x3+6x2+x−53√2f(x)=3x6+4x5−7x4+6x3+6x2+x−532
Tính f(a)
Bài 1: Phân tích các đa thức sau thành nhân tử
a)x2-y2-2x+2y e)x4+4y4
b)x2(x-1)+16(1-x) f)x4-13x2+36
c)x2+4x-y2+4 g) (x2+x)2+4x2+4x-12
d)x3-3x2-3x+1 h)x6+2x5+x4-2x3-2x2+1
a.
$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$
b.
$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$
c.
$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$
d.
$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$
$=(x+1)(x^2-4x+1)$
e.
$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$
$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$
f.
$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$
$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$
g.
$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$
$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$
$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$
$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$
h.
$x^6+2x^5+x^4-2x^3-2x^2+1$
$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$
$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$
Bài 1:Thực hiện các phép tính
a. (x5 +4x3 - 6x2):4x2
b. (x3 +x2-12) : (x-2)
c. (-2x5+3x2-4x3):2x2
d. (x3 - 64):(x2 + 4x + 16)
Bài 2:Rút gọn biểu thức
a. 3x (x - 2)- 5x (1 - x) - 8(x2 - 3)
b.(x - y) (x2 + xy + y2)+2y3
c. (x - y)2 + (x+y)2 - 2(x-y) (x+y)
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b)
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].
P(x)=-6x3-2+4x2+2x-2
Q(x)=-8-4x2+6x3-x4+3x
a,xắp sếp từ lớn đến nhỏ theo lũy thừa
b,tính P(x)-Q(x);P(x)+Q(x)
a: \(P\left(x\right)=6x^3+4x^2+2x-4\)
\(Q\left(x\right)=-x^4+6x^3-4x^2+3x-8\)
b: \(P\left(x\right)-Q\left(x\right)=x^4+8x^2-x+4\)
\(P\left(x\right)+Q\left(x\right)=-x^4+12x^3+5x-12\)
6x1
6x2
6x3
\(6\times1=6\)
\(6\times2=12\\ 6\times3=18\)
6 x 1 = 6
6 x 2 = 12
6 x 3 = 18
ủng hộ mk nhé
(6x2 -5)(2x+3)
(6x3 - 7x2 -x+2) : (2x+1)
\(=12x^3-10x+18x^2-15\)
\(\left(6x^3-7x^2-x+2\right):\left(2x+1\right)\\ =\left[\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(2x-2\right)\right]:\left(2x+1\right)\\ =\left[\left(x-1\right)\left(6x^2-x-2\right)\right]:\left(2x+1\right)\\ =\left\{\left(x-1\right)\left[\left(6x^2+3x\right)-\left(4x+2\right)\right]\right\}:\left(2x+1\right)\\ =\left[\left(x-1\right)\left(3x-2\right)\left(2x+1\right)\right]:\left(2x+1\right)\\ =\left(x-1\right)\left(3x-2\right)\)
\(\left(6x^2-5\right)\left(2x+3\right)=2x\left(6x^2-5\right)+3\left(6x^2-5\right)=12x^3-10x+18x^2-15\)