Những câu hỏi liên quan
H24
Xem chi tiết
NL
21 tháng 1 2022 lúc 19:33

Cho \(0< x< y\le z\le1\) và \(3x+2y+z\le4\). Tìm Max \(S=3x^2+2y^2+z^2\) - Hoc24

Bình luận (0)
H24
21 tháng 1 2022 lúc 19:34

Tham khảo

Khai triển Abel ta có:

\(S=\left(z-y\right)z+\left(y-x\right)\left(z+2y\right)+x\left(3x+2y+z\right)\)

\(\le\left(z-y\right).1+\left(y-x\right).3+4x=x+2y+z\)

\(=\left(1-1\right)z+\left(1-\dfrac{1}{3}\right)\left(2y+z\right)+\dfrac{1}{3}\left(3x+2y+z\right)\)

\(\le\dfrac{2}{3}.3+\dfrac{1}{3}.4=\dfrac{10}{3}\)

Dấu = xảy ra khi \(x=\dfrac{1}{3},y=z=1\)

Bình luận (0)
H24
Xem chi tiết
AL
Xem chi tiết
H24
23 tháng 12 2018 lúc 21:31

Khai triển Abel ta có:

\(S=\left(z-y\right)z+\left(y-x\right)\left(z+2y\right)+x\left(3x+2y+z\right)\)

\(\le\left(z-y\right).1+\left(y-x\right).3+4x=x+2y+z\)

\(=\left(1-1\right)z+\left(1-\dfrac{1}{3}\right)\left(2y+z\right)+\dfrac{1}{3}\left(3x+2y+z\right)\)

\(\le\dfrac{2}{3}.3+\dfrac{1}{3}.4=\dfrac{10}{3}\)

Dấu = xảy ra khi \(x=\dfrac{1}{3},y=z=1\)

Bình luận (0)
DC
Xem chi tiết
DC
30 tháng 3 2016 lúc 18:54

trả lời được tớ cho3 k

Bình luận (0)
NA
5 tháng 4 2016 lúc 19:50

n,;kl;llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Bình luận (0)
DC
Xem chi tiết
DC
Xem chi tiết
HT
Xem chi tiết
DN
Xem chi tiết
NT
Xem chi tiết
H24
11 tháng 4 2018 lúc 20:50

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\ge0\\\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\le1\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

(1) đúng với mọi x,y,z thuộc R =>đúng với mọi x,y,z thuộcZ

điều kiện cần thỏa mãn (2)

\(\left\{{}\begin{matrix}\left|3x-2y\right|\le1\\\left|y+z\right|\le1\\\left|z-x\right|\le1\end{matrix}\right.\) \(\begin{matrix}\left(a\right)\\\left(b\right)\\\left(c\right)\end{matrix}\)

\(\left(b\right)+\left(c\right)\Leftrightarrow\left|y+z\right|+\left|z-x\right|=\left|y+z\right|+\left|x-z\right|\ge\left|y+z+x-z\right|=\left|y+x\right|\) (d)

\(\left|3x-2y\right|+\left|2y+2x\right|\ge\left|3x-2y+2y+2x\right|=\left|5x\right|\)

cần : \(\left|5x\right|\le2\Leftrightarrow x=\left\{0;\pm1\right\}\)

x=0 từ (a) => y =0 ; từ (b) (c)=z =0 ; (x;y;z) =(0;0;0)

x=1 từ (a) =y={1;2}

với y=1 từ (b) => z=-1 ; (x;y;z) =(1;1;-1)

với y=2 từ (b) => z =-2 từ (c) $|-2-1| \ne 0$ loại

x=-1 từ (a) =y={-1;-2}

với y=-1 từ (b) => z= 1 ; (x;y;z) =(-1;-1;1)

với y=-2 từ (b) => z = 2 từ (c) $| 2+1| \ne 0$ loại

kết luận

(x;y;z) =(0;0;0);(1;1;1); (-1;-1;1)

Bình luận (1)