Violympic toán 7

NT

Cho A = \(\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\).Tìm các số nguyên x;y;z để \(0\le A\le1\).

H24
11 tháng 4 2018 lúc 20:50

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\ge0\\\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\le1\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

(1) đúng với mọi x,y,z thuộc R =>đúng với mọi x,y,z thuộcZ

điều kiện cần thỏa mãn (2)

\(\left\{{}\begin{matrix}\left|3x-2y\right|\le1\\\left|y+z\right|\le1\\\left|z-x\right|\le1\end{matrix}\right.\) \(\begin{matrix}\left(a\right)\\\left(b\right)\\\left(c\right)\end{matrix}\)

\(\left(b\right)+\left(c\right)\Leftrightarrow\left|y+z\right|+\left|z-x\right|=\left|y+z\right|+\left|x-z\right|\ge\left|y+z+x-z\right|=\left|y+x\right|\) (d)

\(\left|3x-2y\right|+\left|2y+2x\right|\ge\left|3x-2y+2y+2x\right|=\left|5x\right|\)

cần : \(\left|5x\right|\le2\Leftrightarrow x=\left\{0;\pm1\right\}\)

x=0 từ (a) => y =0 ; từ (b) (c)=z =0 ; (x;y;z) =(0;0;0)

x=1 từ (a) =y={1;2}

với y=1 từ (b) => z=-1 ; (x;y;z) =(1;1;-1)

với y=2 từ (b) => z =-2 từ (c) $|-2-1| \ne 0$ loại

x=-1 từ (a) =y={-1;-2}

với y=-1 từ (b) => z= 1 ; (x;y;z) =(-1;-1;1)

với y=-2 từ (b) => z = 2 từ (c) $| 2+1| \ne 0$ loại

kết luận

(x;y;z) =(0;0;0);(1;1;1); (-1;-1;1)

Bình luận (1)

Các câu hỏi tương tự
JH
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
TP
Xem chi tiết
NA
Xem chi tiết
TA
Xem chi tiết
HN
Xem chi tiết
PA
Xem chi tiết