Những câu hỏi liên quan
PM
Xem chi tiết
KR
Xem chi tiết
NL
8 tháng 4 2021 lúc 21:55

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
8 tháng 4 2021 lúc 22:01

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
H24
Xem chi tiết
H24
21 tháng 6 2021 lúc 16:39

`ĐK:x>=2`

`pt<=>sqrt{(x-1)(x-2)}+sqrt{x+3}=sqrt{x-2}+sqrt{(x-1)(x+3)}`

`<=>sqrt{x-1}(sqrt{x-2}-sqrt{x+3})-(sqrt{x-2}-sqrt{x+3})=0`

`<=>(sqrt{x-2}-sqrt{x+3})(sqrt{x-1}-1)=0`

`+)sqrt{x-2}=sqrt{x+3}`

`<=>x-2=x+3`

`<=>0=5` vô lý

`+)sqrt{x-1}-1=0`

`<=>x-1=1`

`<=>x=2(tm)`.

Vậy `x=2`.

Bình luận (0)
DD
Xem chi tiết
NC
Xem chi tiết
H24
26 tháng 5 2021 lúc 7:21

undefined

Bình luận (0)
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
27 tháng 9 2021 lúc 14:46

Sửa lại đề bài cho mk là: \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)

Bình luận (0)
H24
Xem chi tiết
LH
18 tháng 6 2021 lúc 21:30

Đk:\(x\ge-1\)

Đặt \(\left(a,b,c\right)=\left(x;\sqrt{x+1};\sqrt{2}\right)\)

Pt tt: \(a^3+b^3+c^3=\left(a+b+c\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(\Leftrightarrow0=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

\(\Leftrightarrow3\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\a+c=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{x+1}=0\\\sqrt{x+1}+\sqrt{2}=0\left(vn\right)\\x+\sqrt{2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=-x\\x=-\sqrt{2}\left(ktm\right)\end{matrix}\right.\)\(\Rightarrow\)\(\sqrt{x+1}=-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le0\\x+1=x^2\end{matrix}\right.\)\(\Rightarrow x=\dfrac{1-\sqrt{5}}{2}\) (tm)

Vậy...

Bình luận (0)
HT
Xem chi tiết
NM
13 tháng 12 2021 lúc 21:54

\(ĐK:0\le x\le3\\ PT\Leftrightarrow x^2-3x+1=-\left(x-2-\sqrt{3-x}\right)-\left(x-1-\sqrt{x}\right)\\ \Leftrightarrow x^2-3x+1+\dfrac{x^2-3x+1}{x-2+\sqrt{3-x}}+\dfrac{x^2-3x+1}{x-1+\sqrt{x}}=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+1=0\\1+\dfrac{1}{x-2+\sqrt{3-x}}+\dfrac{1}{x-1+\sqrt{x}}=0\left(1\right)\end{matrix}\right.\)

Với \(0\le x\le3\Leftrightarrow\dfrac{1}{x-2+\sqrt{3-x}}\ge\dfrac{1}{3-2+\sqrt{3-0}}>0;\dfrac{1}{x-1+\sqrt{x}}\ge\dfrac{1}{3-1+\sqrt{3}}>0\)

\(\Leftrightarrow\left(1\right)>0\left(vn\right)\\ \Leftrightarrow x^2-3x+1=0\)

Bình luận (4)
NL
13 tháng 12 2021 lúc 22:05

Pt này chỉ có 1 nghiệm \(x=\dfrac{3+\sqrt{5}}{2}\) thôi

Nếu \(0\le x\le3\) thì \(1+\dfrac{1}{x-2+\sqrt{3-x}}+\dfrac{1}{x-1+\sqrt{x}}\) vẫn có thể âm (ví dụ, với \(x=\dfrac{1}{4}\) )

Do đó ngay từ đầu cần biện luận, thu hẹp khoảng x lại để loại nghiệm và chắc chắn liên hợp kia sẽ dương

Nhận thấy \(\sqrt{3-x}+\sqrt{x}>0\) nên \(x^2-x-2>0\Rightarrow\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)

\(\Rightarrow2< x\le3\)

Khi đó nghiệm \(x=\dfrac{3-\sqrt{5}}{2}\) bị loại (nhỏ hơn 2) đồng thời chắn chắn được \(1+\dfrac{1}{x-2+\sqrt{3-x}}+\dfrac{1}{x-1+\sqrt{x}}>0\)

Bình luận (0)