Những câu hỏi liên quan
H24
Xem chi tiết
NT
12 tháng 10 2021 lúc 21:55

Câu 29:

a: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\)(luôn đúng)

Bình luận (0)
NH
3 tháng 12 2021 lúc 14:24

Hả lơp 1 ????????

Bình luận (0)
DT
27 tháng 6 2022 lúc 11:05

undefined

Bình luận (0)
H24
Xem chi tiết
NM
12 tháng 10 2021 lúc 21:11

\(14,P=x^2+xy+y^2-3x-3y+3\\ P=\left(x^2+xy+\dfrac{1}{4}y^2\right)-3\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2-\dfrac{3}{2}y+3\\ P=\left(x+\dfrac{1}{2}y\right)^2-3\left(x+\dfrac{1}{2}y\right)+\dfrac{9}{4}+\dfrac{3}{4}\left(y^2-2y+1\right)\\ P=\left(x+\dfrac{1}{2}y-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2\ge0\)

Bình luận (0)
JS
12 tháng 10 2021 lúc 21:36

đây là lớp 4 ư

Bình luận (1)
H24
Xem chi tiết
DK
18 tháng 4 2021 lúc 15:58

Áp dụng BĐT cói cho 2 số ko âm ta có 

X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12 

Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y 

( thông cảm mình gõ mũ ko đc ) 

Bình luận (0)
CN
Xem chi tiết
IY
13 tháng 6 2020 lúc 20:37

Bài 2:

Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001

=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996

2M= ( a+b-2)2 + (a-1)2 +(b-1)+ 3996

=> MinM = 1998 tại a=b=1

Bình luận (0)
 Khách vãng lai đã xóa
IY
13 tháng 6 2020 lúc 20:44

Câu 3: 

Ta có: P= x2 +xy+y2 -3.(x+y) + 3

=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)

2P = ( x+y-2)2 +(x-1)2+(y-1)2

=> Min= 0 tại x=y=1

Bình luận (0)
 Khách vãng lai đã xóa
IY
13 tháng 6 2020 lúc 19:42

Bài1:

Ta có: a2+ b2+c2+d2= a.(b+c+d)

=> a2+b2+c2+d2 -ab -ac -ad =0

=> 4a2+ 4b2+4c2+4d2-4ab -4ac -4ad=0

=> ( a2 - 4ab +4b2) + ( a2- 4ac + 4c2) +( a2 -4ad+ 4d2) + a2=0

=> ( a-2b)2 + ( a-2c)2 + (a-2d)2 + a2 =0

=> ....

KL: a=b=c=d=0

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
19 tháng 9 2018 lúc 12:56

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 6 2017 lúc 4:45

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 3 2018 lúc 16:09

Ta có:  2 x 2 + 1 2 ≥ 2 x ;  2 y 2 + 1 2 ≥ 2 y và  x 2 + y 2 ≥ 2 x y

Cộng vế với vế các BĐT trên ta được:

3 x 2 + y 2 + 1 ≥ 2 x + y + x y = 5 2

=> A =  x 2 + y 2 ≥ 1 2

Từ đó tìm được  A m i n = 1 2 <=> x = y =  1 2

Bình luận (0)
VM
Xem chi tiết
LH
24 tháng 5 2021 lúc 22:28

\(x^2+y^2+xy=3\)

Có \(x^2+y^2\ge2xy\) \(\Rightarrow3=x^2+y^2+xy\ge2xy+xy\) \(\Leftrightarrow xy\le1\)

\(x^2+y^2\ge-2xy\) \(\Rightarrow3=x^2+y^2+xy\ge-2xy+xy\) \(\Leftrightarrow-3\le xy\) 

Đặt A= \(x^2+y^2-xy=\left(3-xy\right)-xy=3-2xy\)

mà \(-3\le xy\le1\) \(\Rightarrow9\ge3-2xy\ge1\)

=> minA=1 <=> \(\left\{{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\) <=>x=y=1

maxA=9 <=>\(\left\{{}\begin{matrix}xy=-3\\x=-y\end{matrix}\right.\) <=>\(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

Bình luận (0)
NL
24 tháng 5 2021 lúc 22:29

Đặt \(P=x^2+y^2-xy\)

\(\Rightarrow\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}\)

\(\dfrac{P}{3}=\dfrac{3x^2+3y^2-3xy}{3\left(x^2+y^2+xy\right)}=\dfrac{x^2+y^2+xy+2\left(x^2+y^2-2xy\right)}{3\left(x^2+y^2+xy\right)}\)

\(\dfrac{P}{3}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\Rightarrow P\ge1\)

\(P_{min}=1\) khi \(x=y=1\)

\(\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow P\le9\)

\(P_{max}=9\) khi \(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 8 2017 lúc 3:19

Chọn đáp án A

Bình luận (0)