Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NN
Xem chi tiết
NN
28 tháng 8 2021 lúc 18:29

3^n+1 - 2^n+1 nha

gấp quá nên mik nhắn nhầm

Bình luận (0)
 Khách vãng lai đã xóa
MG
31 tháng 8 2021 lúc 13:41

Ta có :

B = 3n+3 - 2n+2 + 3n-1 - 2n+1 ( n ∈ N* )

=> B = ( 3n+3 + 3n-1 ) + ( 2n+3 - 2n+1 )

=> B = 3n-1 . ( 34 - 1 ) + 2n+1 . ( 22 + 1 )

=> B = 3n-1 . ( 81 - 1 ) + 2n+1 . ( 4 + 1 )

=> B = 3n-1 . 80 + 2n . 2 . 5

=> B = 3n-1 . 8 . 10 + 2n . 10

=> B = ( 3n-1 . 8 + 2n ) . 10 ⋮ 10 ( do 3n-1 . 8 + 2n ∈ N* với n ∈ N* )

Vậy với mọi số nguyên dương n thì B ⋮ 10

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
PN
6 tháng 8 2021 lúc 9:12

3n+2 -2n+2 +3n -2n

=3.32 -2n .22 +3n -22

=3n(9+)-2n(4-1)

Vì 3n .10 ⋮10

=> 3n .10- 2n .3⋮10

=>3n +2 -2n+2 +3n -2n ⋮10

Bình luận (1)
PB
Xem chi tiết
CT
25 tháng 11 2018 lúc 4:57

* Ta có u 1 = 9 1 − 1 = 8  chia hết cho 8 (đúng với n = 1).

* Giả sử u k = 9 k − 1 chia hết cho 8.

Ta cần chứng minh u k + 1 = 9 k + 1 − 1  chia hết cho 8.

Thật vậy, ta có u k + 1 = 9 k + 1 − 1 = 9.9 k − 1 = 9 9 k − 1 + 8 = 9 u k + 8 .

Vì 9 u k và 8 đều chia hết cho 8, nên u k + 1 cũng chia hết cho 8.

Vậy với mọi số nguyên dương n thì u n chia hết cho 8.

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 9 2017 lúc 9:11

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 10 2019 lúc 5:41

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

Bình luận (0)
HN
Xem chi tiết
LL
2 tháng 11 2021 lúc 12:05

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)

\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)

Bình luận (0)
TN
Xem chi tiết
DD
Xem chi tiết
TA
11 tháng 2 2016 lúc 18:30

n^3 + 20n = n^3 - 4n + 24n 
n^3 + 20n = n.(n² - 4) + 24n 
n^3 + 20n = n.(n - 2).(n+2) + 24n 
n = 2k 
=> n^3 + 20n = 8k.(k - 1).(k+1) + 48k 
ta có: k.(k-1).(k+1) là tích 3 stn liên tiếp => chia hết cho 2.3 = 6 
=> 8k.(k - 1).(k+1) chia hết 8.6 = 48 => n^3 +20n chia hết cho 48.

 

Bình luận (0)
TH
11 tháng 2 2016 lúc 18:33

minh moi hok lop 6

Bình luận (0)
KL
11 tháng 2 2016 lúc 18:37

ta có P=n^3+20n

=n^3-4n+24n

=n(n^2-4)+24n

=n(n-2)(n+2)+24n

vì n là số nguyên chẵn => n=2k

=> n^3-4n+24n=2k(2k-2)(2k+2)+24.2k=8k

Bình luận (0)
H24
Xem chi tiết
NT
1 tháng 12 2023 lúc 14:06

Bạn ghi lại biểu thức đi bạn

Bình luận (1)
NT
1 tháng 12 2023 lúc 14:12

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=\left(3^n\cdot9+3^n\right)-\left(4\cdot2^n+2^n\right)\)

\(=10\cdot3^n-5\cdot2^n\)

\(=10\cdot3^n-10\cdot2^{n-1}=10\left(3^n-2^{n-1}\right)⋮10\)

Bình luận (0)