Những câu hỏi liên quan
H24
Xem chi tiết
NT
5 tháng 8 2023 lúc 20:28

1: =>sin^2(3x)=0

=>sin 3x=0

=>3x=kpi

=>x=kpi/3

2:

\(sinx=1-cos^2x=sin^2x\)

=>\(sin^2x-sinx=0\)

=>sin x(sin x-1)=0

=>sin x=0 hoặc sin x=1

=>x=pi/2+k2pi hoặc x=kpi

4:

sin 2x+sin x=0

=>sin 2x=-sin x=sin(-x)

=>2x=-x+k2pi hoặc 2x=pi+x+k2pi

=>x=pi+k2pi hoặc x=k2pi/3

5: =>cos(x+pi/3)=1/căn 2

=>x+pi/3=pi/4+k2pi hoặc x+pi/3=-pi/4+k2pi

=>x=-pi/12+k2pi hoặc x=-7/12pi+k2pi

Bình luận (0)
HB
Xem chi tiết
PB
Xem chi tiết
CT
28 tháng 10 2017 lúc 18:00

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 5 2017 lúc 18:07

Chọn A.

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 11 2019 lúc 4:25

Đáp án A

Phương trình đã cho tương đương với 

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 2 2018 lúc 5:36

Phương trình đã cho tương đương với

2 sin 3 x + sin 2 x = 0 ⇔ sin x = 0 sin x = - 1 2

Do điều kiện  sin x < 1 2  nên sinx = 0 nên  x = kπ ; k ∈ ℤ

Đáp án A

Bình luận (0)
ND
Xem chi tiết
NL
30 tháng 8 2020 lúc 22:22

a/

\(\sqrt{3}sin4x-cos4x=2cosx\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin4x-\frac{1}{2}cos4x=cosx\)

\(\Leftrightarrow sin\left(4x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{6}=\frac{\pi}{2}-x+k2\pi\\4x-\frac{\pi}{6}=\frac{\pi}{2}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{15}+\frac{k2\pi}{5}\\x=\frac{2\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)

Bình luận (0)
NL
30 tháng 8 2020 lúc 22:28

b/

\(\Leftrightarrow cosx-\sqrt{3}sinx=sin2x-\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=sin\left(2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(\frac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=\frac{5\pi}{6}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

Bình luận (0)
NL
30 tháng 8 2020 lúc 22:30

c/

\(\Leftrightarrow cos3x-\sqrt{3}sin3x=\sqrt{3}cos2x-sin2x\)

\(\Leftrightarrow\frac{1}{2}cos3x-\frac{\sqrt{3}}{2}sin3x=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(3x+\frac{\pi}{3}\right)=cos\left(2x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\3x+\frac{\pi}{3}=-2x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=-\frac{\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 6 2019 lúc 8:18

Hướng dẫn giải:

Chọn A.

Ta có: sin2x – 2( m- 1)sinx. cosx – (m- 1).cos2x = m

Bình luận (0)
H24
Xem chi tiết