Những câu hỏi liên quan
PB
Xem chi tiết
CT
27 tháng 3 2018 lúc 8:26

Chọn B.

Ta có:

a(a2 – c2) = b(b2 – c2) a3 – ac2 = b3 – bc2

a3 – b3 = ac2 – bc2

(a – b)(a2 + ab + b2) = c2(a – b)

a2 + ab + b2 = c2

ab = c2 – a2 – b2

Ta lại có: 

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 4 2019 lúc 16:23

Trong tam giác ABC, theo Hệ quả định lý Cô sin ta luôn có :

Giải bài 8 trang 62 sgk Hình học 10 | Để học tốt Toán 10

Mà ta có 2.bc > 0 nên cos A luôn cùng dấu với b2 + c2 – a2.

a) Góc A nhọn ⇔ cos A > 0 ⇔ b2 + c2 – a2 > 0 ⇔ a2 < b2 + c2.

b) Góc A tù ⇔ cos A < 0 ⇔ b2 + c2 – a2 < 0 ⇔ a2 > b2 + c2.

c) Góc A vuông ⇔ cos A = 0 ⇔ b2 + c2 – a2 = 0 ⇔ a2 = b2 + c2.

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 7 2017 lúc 15:45

Chọn C.

Theo đầu bài ta có; b(b2 - a2) = c(c2 - a2)

Hay b3 - c3 = a2(b - c)

Mà b - c ≠ 0 nên b2 + bc + c2 = a2

Theo định lí côsin thì a2 = b2 + c2 - 2bccosA

Do đó: b2 + bc + c2 = b2 + c2 - 2bccosA

Suy ra: cos A = - ½  hay góc A bằng 1200.

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 2 2018 lúc 4:53

Bình luận (0)
FA
Xem chi tiết
DL
28 tháng 2 2022 lúc 17:58

chọn C = 60 độ á

Bình luận (0)
NM
Xem chi tiết
NL
17 tháng 9 2021 lúc 15:53

Kẻ đường cao BD ứng với AC. Do góc A tù \(\Rightarrow\) D nằm ngoài đoạn thẳng AC hay \(CD=AD+AC\) và \(\widehat{DAB}=180^0-120^0=60^0\)

Áp dụng định lý Pitago:

\(AB^2=BD^2+AD^2\) \(\Rightarrow BD^2=AB^2-AD^2\)

Trong tam giác vuông ABD:

\(cos\widehat{BAD}=\dfrac{AD}{AB}\Rightarrow\dfrac{AD}{AB}=cos60^0=\dfrac{1}{2}\Rightarrow AD=\dfrac{1}{2}AB\)

\(\Rightarrow BD^2=AB^2-\left(\dfrac{1}{2}AB^2\right)=\dfrac{3}{4}AB^2\)

Pitago tam giác BCD:

\(BC^2=BD^2+CD^2=\dfrac{3}{4}AB^2+\left(AD+AC\right)^2\)

\(=\dfrac{3}{4}AB^2+\left(\dfrac{1}{2}AB+AC\right)^2\)

\(=\dfrac{3}{4}AB^2+\dfrac{1}{4}AB^2+AB.AC+AC^2\)

\(=AB^2+AB.AC+AC^2\)

Hay \(a^2=b^2+c^2+bc\)

Bình luận (0)
NL
17 tháng 9 2021 lúc 15:54

undefined

Bình luận (0)
TD
Xem chi tiết
H24
Xem chi tiết
H24
24 tháng 6 2021 lúc 8:07

Bình luận (0)
TA
Xem chi tiết
NL
23 tháng 1 2021 lúc 11:54

a.

Theo BĐT tam giác: \(c< a+b\Rightarrow c^2< ac+bc\)

\(b< a+c\Rightarrow b^2< ab+bc\) ; \(a< b+c\Rightarrow a^2< ab+ac\)

Cộng vế với vế: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

b.

Do a;b;c là 3 cạnh của tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\b+c-a>0\\c+a-b>0\end{matrix}\right.\)

\(\left(a+b-c\right)\left(b+c-a\right)\le\dfrac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)

Tương tự: \(\left(b+c-a\right)\left(a+c-b\right)\le c^2\) ; \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

Nhân vế với vế:

\(\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\)

Bình luận (0)