Tính giới hạn L = \(\dfrac{n^2+n+5}{2n^2+1}\)
Tính giới hạn :
L = lim \(\dfrac{\left(n^2+2n\right)\left(2n^3+1\right)\left(4n+5\right)}{\left(n^4-3n-1\right)\left(3n^2-7\right)}\)
Dang này thì cứ chọn số hạng có mũ cao nhất trên tử và mẫu là được. Nó là ngắt vô cùng lớn hay bé gì đấy
\(=lim\dfrac{8n^6}{3n^6}=\dfrac{8}{3}\)
1. hàm số y = 3cosx luôn nhận giá trị trong tập nào
2. tập xác định của hàm số y = cosx
3. tính giới hạn \(L=\lim\limits\dfrac{n^2-3n^3}{2n^3+5n-2}\)
4. tính giới hạn \(L=\lim\limits\left(3n^2+5n-3\right)\)
5. kết quả của giới hạn \(\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\)
1: \(-1< =cosx< =1\)
=>\(-3< =3\cdot cosx< =3\)
=>\(y\in\left[-3;3\right]\)
2:
TXĐ là D=R
3: \(L=\lim\limits\dfrac{-3n^3+n^2}{2n^3+5n-2}\)
\(=\lim\limits\dfrac{-3+\dfrac{1}{n}}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}=-\dfrac{3}{2}\)
4:
\(L=lim\left(3n^2+5n-3\right)\)
\(=\lim\limits\left[n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\right]\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}lim\left(n^2\right)=+\infty\\\lim\limits\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)=3>0\end{matrix}\right.\)
5:
\(\lim\limits_{n\rightarrow+\infty}n^3-2n^2+3n-4\)
\(=\lim\limits_{n\rightarrow+\infty}n^3\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow+\infty}n^3=+\infty\\\lim\limits_{n\rightarrow+\infty}1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}=1>0\end{matrix}\right.\)
\(1,y=3cosx\)
\(+TXD\) \(D=R\)
Có \(-1\le cosx\le1\)
\(\Leftrightarrow-3\le3cosx\le3\)
Vậy có tập giá trị \(T=\left[-3;3\right]\)
\(2,y=cosx\)
\(TXD\) \(D=R\)
\(3,L=lim\dfrac{n^2-3n^3}{2n^3+5n-2}=lim\dfrac{\dfrac{1}{n}-3}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}\)(chia cả tử và mẫu cho \(n^3\))
\(=\dfrac{lim\dfrac{1}{n}-lim3}{lim2+5lim\dfrac{1}{n^2}-2lim\dfrac{1}{n^3}}=\dfrac{0-3}{2+5.0-2.0}=-\dfrac{3}{2}\)
\(4,L=lim\left(3n^2+5n-3\right)\\ =lim\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\\ =lim3+5lim\dfrac{1}{n}-3lim\dfrac{1}{n^2}\\ =3\)
\(5,\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\\ =lim\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\\ =lim1-0\\ =1\)
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\)
3) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\)
\(1,\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\left(1\right)\)
\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}=\dfrac{-\dfrac{n^2}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\sqrt{\dfrac{3n^4}{n^4}+\dfrac{2}{n^4}}}=\dfrac{-\dfrac{1}{n^2}+\dfrac{2}{n^3}+\dfrac{1}{n^4}}{\sqrt{3+\dfrac{2}{n^4}}}\)
\(\Rightarrow\left(1\right)=\dfrac{-lim\dfrac{1}{n^2}+2lim\dfrac{1}{n^3}+lim\dfrac{1}{n^4}}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}\)
\(=\dfrac{0}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}=0\)
\(2,\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\left(2\right)\)
\(\dfrac{4n-\sqrt{16n^2+1}}{n+1}=\dfrac{\dfrac{4n}{n^2}-\sqrt{\dfrac{16n^2}{n^2}+\dfrac{1}{n^2}}}{\dfrac{n}{n^2}+\dfrac{1}{n^2}}=\dfrac{\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}}{\dfrac{1}{n}+\dfrac{1}{n^2}}\)
\(\Rightarrow\left(2\right)=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{lim\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{0}\)
Vậy giới hạn \(\left(2\right)\) không xác định.
\(3,\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\left(3\right)\)
\(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}=\dfrac{\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}}{\dfrac{2}{n}}\)
\(\Rightarrow\left(3\right)=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{2lim\dfrac{1}{n}}=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{0}\)
Vậy \(lim\left(3\right)\) không xác định.
Tính giới hạn: \(lim\left(\dfrac{2n^2+3n}{n+1}-\dfrac{2n^3-3}{n^2-1}\right)\)
\(\lim\limits\left(\dfrac{2n^2+3n}{n+1}-\dfrac{2n^3-3}{n^2-1}\right)\)
\(=\lim\limits\left(\dfrac{2n^2+3n}{n+1}-\dfrac{2n^3-3}{\left(n-1\right)\cdot\left(n+1\right)}\right)\)
\(=\lim\limits\dfrac{\left(2n^2+3n\right)\left(n-1\right)-2n^3+3}{\left(n+1\right)\left(n-1\right)}\)
\(=\lim\limits\dfrac{2n^3-2n^2+3n^2-3n-2n^3+3}{\left(n+1\right)\left(n-1\right)}\)
\(=\lim\limits\dfrac{n^2-3n+3}{n^2-1}\)
\(=\lim\limits\dfrac{1-\dfrac{3}{n}+\dfrac{3}{n^2}}{1-\dfrac{1}{n^2}}=\dfrac{1-0+0}{1-0}=1\)
Tính giới hạn của L =lim \(\dfrac{\left(2n-n^3\right)\left(3n^2+1\right)}{\left(2n-1\right)\left(n^4-7\right)}\)
Chia cả tử và mẫu cho \(n^5\)
\(=\lim\dfrac{\left(\dfrac{2n-n^3}{n^3}\right)\left(\dfrac{3n^2+1}{n^2}\right)}{\left(\dfrac{2n-1}{n}\right)\left(\dfrac{n^4-7}{n^4}\right)}=\lim\dfrac{\left(\dfrac{2}{n^2}-1\right)\left(3+\dfrac{1}{n^2}\right)}{\left(2-\dfrac{1}{n}\right)\left(1-\dfrac{7}{n^4}\right)}\)
\(=\dfrac{-1.3}{2.1}=-\dfrac{3}{2}\)
Tính giới hạn : L =lim \(\dfrac{n^2-3n^3}{2n^3+5n-2}\)
\(=\lim\dfrac{\dfrac{1}{n}-3}{2+\dfrac{5}{n}-\dfrac{2}{n^3}}=-\dfrac{3}{2}\)
Tính giới hạn: \(lim\left(\dfrac{n+1}{n^2+2n}-\dfrac{1}{n-1}\right)\)
\(\lim\limits\left(\dfrac{n+1}{n^2+2n}-\dfrac{1}{n-1}\right)\)
\(=\lim\limits\dfrac{\left(n+1\right)\left(n-1\right)-n^2-2n}{\left(n-1\right)\left(n^2+2n\right)}\)
\(=lim\dfrac{n^2-1-n^2-2n}{\left(n-1\right)\left(n^2+2n\right)}\)
\(=lim\dfrac{-2n-1}{n^3+n^2-2n}\)
\(=\lim\limits\dfrac{-\dfrac{2}{n^2}-\dfrac{1}{n^3}}{1+\dfrac{1}{n}-\dfrac{2}{n^2}}=0\)
Đề bị lỗi công thức rồi bạn. Bạn cần viết lại để được hỗ trợ tốt hơn.
Tìm các giới hạn sau:
a) \(lim\sqrt[3]{-n^3+2n^2-5}\)
b) \(lim\dfrac{1}{\sqrt{n+1}-\sqrt{n}}\)
c) \(lim\left(\dfrac{1}{n+1}-n\right)\)
d) \(lim\left(\dfrac{2n^2-1}{n+1}-2n\right)\)
e) \(lim\dfrac{2n^3+n^2-3n+1}{2-3n}\)
\(a=\lim n\left(\sqrt[3]{-1+\dfrac{2}{n}-\dfrac{5}{n^3}}\right)=+\infty.\left(-1\right)=-\infty\)
\(b=\lim\left(\sqrt{n+1}+\sqrt{n}\right)=+\infty\)
\(c=\lim n\left(\dfrac{1}{n^2+n}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim\left(\dfrac{2n^2-1-2n\left(n+1\right)}{n+1}\right)=\lim\left(\dfrac{-1-2n}{n+1}\right)=-2\)
\(e=\lim\dfrac{2n^2+n-3+\dfrac{1}{n}}{\dfrac{2}{n}-3}=\dfrac{+\infty}{-3}=-\infty\)