Những câu hỏi liên quan
SN
Xem chi tiết

Ta có : \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)

Các số dương \(x\)và \(\frac{144}{x}\)Có tích ko đổi nên tổng nhỏ nhất khi và chỉ khi \(x=\frac{144}{x}\)

\(\Rightarrow x=12\)

Vậy \(Min\)\(A=49\Leftrightarrow x=12\)

Bình luận (0)
NA
18 tháng 8 2019 lúc 15:19

Ta có: 

\(A=\frac{\left(x+16\right)\left(x+19\right)}{x}\)

\(=\frac{x^2+25x+144}{x}=\frac{\left(x+12,5\right)^2-12,25}{x}\)

\(=\frac{\left(x+12,5\right)^2}{x}-\frac{12,25}{x}\ge\frac{-12,5}{x}\forall x>0\)

Đến đây dễ rồi bạn tự làm nốt !

Bình luận (0)
QP
Xem chi tiết
LG
12 tháng 3 2020 lúc 11:40

\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}\)

\(=x+25+\frac{144}{x}\)

Có x > 0, Áp dụng BĐT Cô-si với hai số x và 144/x

\(x+\frac{144}{x}\ge2.\sqrt{x.\frac{144}{x}}=24\)

\(\Leftrightarrow x+25+\frac{144}{x}\ge24+25=49\)

Dấu = xảy ra \(\Leftrightarrow x=\frac{144}{x}\Leftrightarrow x^2=144\Leftrightarrow x=12\)

Vậy \(Min_A=49\Leftrightarrow x=12\)

Bình luận (0)
LV
Xem chi tiết
NM
30 tháng 12 2015 lúc 12:14

Bài này thắng làm  rồi 

Bình luận (0)
HH
Xem chi tiết
DH
22 tháng 8 2017 lúc 14:52

Bđt phụ \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\forall\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab=\left(a-b\right)^2\ge0\)(đúng)

Áp dụng ta được : 

\(A\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)

Bình luận (0)
DM
Xem chi tiết
TD
31 tháng 3 2017 lúc 6:55

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

Bình luận (0)
DL
Xem chi tiết

Tự tìm Đkxđ nha.

1/(3y^2 - 10y +3) = 6y/(9y^2 - 1) + 2/(1 - 3y)

=>1/(3y^2 -9y -y +3)=6y/(3y- 1)(3y+ 1)- 2(3y+ 1)/(3y - 1)(3y+ 1)

=>1/(y- 3)(3y -1)=-1/(3y -1)(3y +1)

=>(3y+ 1)/(y- 3)(3y -1)(3y+ 1)=(y -3)/(3y- 1)(3y +1)

=>3y+ 1= y- 3

Đến đây tự làm nha

Bình luận (0)
NT
21 tháng 2 2019 lúc 20:56

a)ĐKXĐ:\(\hept{\begin{cases}y\ne3\\y\ne\frac{1}{3}\\y\ne-\frac{1}{3}\end{cases}}\)

\(\frac{1}{3y^2-10y+3}=\frac{6y}{9y^2-1}+\frac{2}{1-3y}\)

\(\Leftrightarrow\frac{1}{\left(y-3\right)\left(3y-1\right)}=\frac{6y}{\left(3y-1\right)\left(3y+1\right)}-\frac{2}{3y-1}\)

\(\Leftrightarrow\frac{3y+1}{\left(y-3\right)\left(3y-1\right)\left(3y+1\right)}=\frac{6y\left(y-3\right)}{\left(3y-1\right)\left(3y+1\right)\left(y-3\right)}-\frac{2\left(3y+1\right)\left(y-3\right)}{\left(3y-1\right)\left(3y+1\right)\left(y-3\right)}\)

\(\Rightarrow6y^2-18y-2\left(3y^2-9y+y-3\right)-3y-1=0\)

\(\Leftrightarrow6y^2-18y-6y^2+18y-2y+6-3y-1=0\)

\(\Leftrightarrow5-5y=0\)

\(\Leftrightarrow5y=5\Leftrightarrow y=1\)(t/m ĐKXĐ)

Vậy....

Bình luận (0)
NC
21 tháng 2 2019 lúc 20:56

a)

 \(3y^2-10y+3=3y^2-9y-y+3=3y\left(y-3\right)-\left(y-3\right)=\left(y-3\right)\left(3y-1\right)\)

\(9y^2-1=\left(3y\right)^2-1^2=\left(3y-1\right)\left(3y+1\right)\)

ĐK: \(y\ne3,\frac{1}{3},-\frac{1}{3}\)

pt <=> \(\frac{1}{\left(3y-1\right)\left(y-3\right)}=\frac{6y}{\left(3y-1\right)\left(3y+1\right)}-\frac{2}{3y-1}\)

<=> \(\frac{1}{y-3}=\frac{6y}{3y+1}-2\)

<=> \(\frac{3y+1}{\left(y-3\right)\left(3y+1\right)}=\frac{6y\left(y-3\right)}{\left(3y+1\right)\left(y-3\right)}-\frac{2\left(3y+1\right)\left(y-3\right)}{\left(3y+1\right)\left(y-3\right)}\)

<=> 3y+1=6y(y-3)-2(3y+1)(y-3)

<=> \(3y+1=6y^2-18y-6y^2+16y+6\)

<=> 5y=5 <=> y=1 ( thỏa mãn )

vậy y=1

Bình luận (0)
H24
Xem chi tiết
NN
26 tháng 12 2022 lúc 14:50

đợi tý

Bình luận (0)
WS
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Bình luận (0)
DM
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Bình luận (0)
H24
Xem chi tiết
NP
14 tháng 1 2021 lúc 16:47

tao chơi hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy tao đó

Bình luận (0)
 Khách vãng lai đã xóa
EC
14 tháng 1 2021 lúc 16:52

Áp dụng bđt: a2 + b2 > = (a + b)2/2

Cm đúng <=> 2a2 + 2b2 - a2 - 2ab - b2 > = 0

<=> (a - b)> = 0 (luôn đúng với mọi a,b

Khi đó, ta có: A = \(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

Áp dụng bđt: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

CM đúng <=> (a + b)2 > = 4ab

<=> (a - b)2 > = 0 (luôn đúng với mọi a,b)

Ta lại có: A \(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=18\)

Dấu"=" xảy ra <=> x = y = 1/2

Vậy minA = 18/ <=> x = y = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết