H24

1.Tìm giá trị nhỏ nhất của biểu thức A= \(\frac{\left(x+16\right)\left(x+9\right)}{x}\) với x>0

DQ
13 tháng 1 2021 lúc 21:11

Ta có: \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)

Các số dương : x và \(\frac{144}{x}\) có tích k đổi nên tổng nhỏ nhất và chỉ khi  \(x=\frac{144}{x}\)=> x=12

Vậy Min A = 49 khi và chỉ khi x=12

Bình luận (0)
 Khách vãng lai đã xóa
NN
13 tháng 1 2021 lúc 21:31

\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)

Vì \(x>0\)\(\Rightarrow\) Áp dụng bđt Cô si ta có:

\(x+\frac{144}{x}\ge2\sqrt{x.\frac{144}{x}}=2.\sqrt{144}=2.12=24\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{144}{x}\)\(\Leftrightarrow x^2=144\)\(\Leftrightarrow x=12\)( do \(x>0\))

\(\Rightarrow A\ge25+24=49\)

Vậy \(minA=49\)\(\Leftrightarrow x=12\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
13 tháng 1 2021 lúc 21:13

\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)

Với x > 0, áp dụng bđt Cauchy ta có :

\(A=x+25+\frac{144}{x}\ge2\sqrt{x\cdot\frac{144}{x}}+25=24+25=49\)

Đẳng thức xảy ra khi x = 12

Vậy MinA = 49, đạt được khi x = 12

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
SN
Xem chi tiết
HH
Xem chi tiết
DL
Xem chi tiết
H24
Xem chi tiết
BP
Xem chi tiết
LV
Xem chi tiết
EG
Xem chi tiết
NL
Xem chi tiết
TN
Xem chi tiết