Những câu hỏi liên quan
H24
Xem chi tiết
VD
Xem chi tiết
TH
4 tháng 4 2022 lúc 20:29

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Bình luận (5)
TH
4 tháng 4 2022 lúc 20:42

c. Bạn kiểm tra lại đề nhé.

b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)

Bình luận (1)
NL
5 tháng 4 2022 lúc 22:58

a.

\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)

Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)

b.

\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)

Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)

c.

Biểu thức này chỉ có min, ko có max

d.

\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
HG
Xem chi tiết
DJ
Xem chi tiết
H24
Xem chi tiết
DH
18 tháng 2 2018 lúc 20:46

\(A=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x+y\right)^2+4xy}{\left(x+y\right)^2}=\frac{2.2012^2+4xy}{2012^2}\)

\(\le\frac{2.2012^2+4.\frac{\left(x+y\right)^2}{4}}{2012^2}=\frac{2.2012^2+2012^2}{2012^2}=\frac{3.2012^2}{2012^2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1006\)

Bình luận (0)
PD
18 tháng 2 2018 lúc 20:50

anh hùng giải thích cho em cái chỗ  \(\frac{4.\left(x+y\right)^2}{4}\) với

Bình luận (0)
H24
18 tháng 2 2018 lúc 20:56

Theo bđt cô-si ta có : \(x+y\ge2\sqrt{xy}\)

=> \(\left(x+y\right)^2\ge4xy\)

=> \(4\cdot\frac{\left(x+y\right)^2}{4}\ge4xy\)

Bình luận (0)
TL
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
AH
31 tháng 10 2023 lúc 10:52

Đề thiếu. Bạn viết lại đề cẩn thận, rõ ràng để mọi người hỗ trợ tốt hơn bạn nhé.

Bình luận (0)
PQ
Xem chi tiết
YN
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa