Cho hàm số y = ( m - 2 )x
a) Vẽ đồ thị hàm số với m bằng 4
b) Tìm m để A(2,-3) thuộc đồ thị hàm số
cho hàm số y=(m-2)x+5 có đồ thị đường thẳng là (d)(m là tham số,m khác 2)
a, vẽ đồ thị hàm số trên với m = 4
b,tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoanh độ là 2
b: Thay x=2 và y=0 vào (d), ta được:
2m-4+5=0
hay m=-1/2
cho hàm số y=(2m-3)x
a) tìm m để hàm số nhận giá trị bằng -3 tại x=2
b) với giá trị nào của m thì đồ thị hàm số đi qua điểm A(-1;5)
c) tìm m để điểm B(-5;0) thuộc đồ thị hàm số
a: Thay x=2 và y=-3 vào (d), ta được:
2(2m-3)=-3
=>2m-3=-3/2
=>2m=3/2
=>m=3/4
b: Thay x=-1 và y=5 vào (d), ta được:
-(2m-3)=5
=>2m-3=-5
=>2m=-2
=>m=-1
c: Thay x=-5 và y=0 vào (d), ta được:
-5(2m-3)=0
=>2m-3=0
=>m=3/2
Cho hàm số y = (m-1)x+3 (1) a) vẽ đồ thị hàm số trên với m -1. b) tìm m để đồ thị hàm số (1) song song với đồ thị hàm số y = -x + 2
b: Để hai đường thẳng song song thì m-1=-1
hay m=0
Cho hàm số y = - 3x + 2 (d) a) Vẽ đồ thị (d) của hàm số trên. b) Tìm m để đồ thị hàm số y = (m+1)x - 3 song song với đồ thị hàm số y = - 3x + 2.
a:
b: Để đồ thị hàm số y=(m+1)x-3 song song với đồ thị hàm số y=-3x+2 thì \(\left\{{}\begin{matrix}m+1=-3\\2\ne-3\left(đúng\right)\end{matrix}\right.\)
=>m+1=-3
=>m=-4
. Cho hàm số y = 3x a/ Vẽ đồ thị của hàm số. b/ Tìm m để điểm A(m ; m – 1) thuộc đồ thị hàm số. c/ Tìm n để điểm B(n ; n² – 4) thuộc đồ thị hàm số.
\(b,\Leftrightarrow3m=m-1\Leftrightarrow2m=-1\Leftrightarrow m=-\dfrac{1}{2}\\ c,\Leftrightarrow3n=n^2-4\\ \Leftrightarrow n^2-3n-4=0\\ \Leftrightarrow n^2-4n+n-4=0\\ \Leftrightarrow\left(n-4\right)\left(n+1\right)=0\Leftrightarrow\left[{}\begin{matrix}n=4\\n=-1\end{matrix}\right.\)
cho hàm số y=(5-2m)x a)tìm m để đồ thị hàm số đi qua a (-2;-6)b)viết công thức hàm số với m tìm đượ và vẽ đồ thị hàm số c)trong các điểm say điểm nào thuộc đồ thị hàm số d (-1;3)e(1/2;-3/2)f(0;3)g (1/3;1)
Cho hàm số y=(2m-3)x
a) Với giá trị nào của m thì đồ thị hàm số đi qua điểm A(- 1; 5)?
b) Tìm m để điểm B( -5;0) thuộc đồ thị hàm số.
a. Đồ thị hàm số qua A khi:
\(-1.\left(2m-3\right)=5\)
\(\Leftrightarrow3-2m=5\)
\(\Leftrightarrow m=-1\)
b. B thuộc đồ thị hàm số khi:
\(-5\left(2m-3\right)=0\)
\(\Leftrightarrow2m-3=0\)
\(\Leftrightarrow m=\dfrac{3}{2}\)
a) Thay x=-1 và y=5 vào (d), ta được:
\(\left(2m-3\right)\cdot\left(-1\right)=5\)
\(\Leftrightarrow2m-3=-5\)
\(\Leftrightarrow2m=-2\)
hay m=-1
b) Thay x=-5 và y=0 vào (d), ta được:
\(\left(2m-3\right)\cdot\left(-5\right)=0\)
\(\Leftrightarrow2m-3=0\)
hay \(m=\dfrac{3}{2}\)
Cho hàm số y = ax2 ( P)
a) Tìm a để M( -1; 3) thuộc đồ thị hàm số (P)
b) Vẽ đồ thị hàm số ứng với a tìm được
a: Thay x=-1 và y=3 vào (P), ta được:
a*(-1)^2=3
=>a=3
b: y=3x^2
Cho hàm số \(y=mx+m-6\left(m\ne0\right)\left(1\right)\).
1) Xác định m biết đồ thị hàm số (1) đi qua điểm M(2; 3). Vẽ đồ thị hàm số (1) với m vừa tìm được.
2) Tìm m để đồ thị hàm số (1) song song với đường thẳng \(y=3x+2\)
3) Chứng minh rằng đồ thị hàm số (1) luôn đi qua một điểm cố định với mọi giá trị của tham số m
1. Đồ thị của hàm số đi qua điểm \(M\left(2;3\right)\) nên giá trị hoành độ và tung độ của \(M\) là nghiệm của phương trình đường thẳng trên, tức:
\(3=m\cdot2+m-6\Leftrightarrow m=3\left(TM\right)\)
2. Đồ thị hàm số song song với đường thẳng \(\left(d\right):y=3x+2\), khi: \(\left\{{}\begin{matrix}m=3\\m-6\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne8\end{matrix}\right.\Rightarrow m=3\left(TM\right)\)
3. Gọi \(P\left(x_0;y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua với mọi giá trị \(m\).
Khi đó: \(mx_0+m-6=y_0\Leftrightarrow\left(x_0+1\right)m-\left(y_0+6\right)=0\left(I\right)\)
Suy ra, phương trình \(\left(I\right)\) có vô số nghiệm, điều này xảy ra khi: \(\left\{{}\begin{matrix}x_0+1=0\\y_0+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-6\end{matrix}\right.\).
Vậy: Điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị \(m\) là \(P\left(-1;-6\right)\).