Những câu hỏi liên quan
NC
Xem chi tiết
LY
Xem chi tiết
NT
30 tháng 10 2023 lúc 20:42

\(A=1+3+3^2+3^3+...+3^{2022}\)

\(=1+\left(3+3^2+3^3\right)+...+\left(3^{2020}+3^{2021}+3^{2022}\right)\)

\(=1+3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2020}\left(1+3+3^2\right)\)

\(=1+13\left(3+3^4+...+3^{2020}\right)\)

=>A chia 13 dư 1

Bình luận (0)
BH
Xem chi tiết
CM
21 tháng 12 2018 lúc 21:01

Bạn ko biết gõ số mũ à gõ thế này bố ai mà hiểu được

Bình luận (0)
NN
Xem chi tiết
NN
22 tháng 12 2021 lúc 16:52

Lồn bâm

Bình luận (0)
NN
22 tháng 12 2021 lúc 16:53

Gâu gâu 

Bình luận (0)
6L
Xem chi tiết
NH
1 tháng 1 2018 lúc 12:51

\(M=1+3+3^2+............+3^{100}\)

\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+.......+\left(3^{98}+3^{99}+3^{100}\right)\)

\(\Leftrightarrow M=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+......+3^{98}\left(1+3+3^2\right)\)

\(\Leftrightarrow M=4+3^2.13+3^5.13+.........+3^{98}.13\)

\(\Leftrightarrow M=4+13\left(3^2+3^5+..........+3^{98}\right)\)

\(13\left(3^2+3^5+......+3^{98}\right)⋮13\)

\(4:13\left(dư4\right)\)

\(\Leftrightarrow M:13\left(dư4\right)\)

b, tương tự

Bình luận (1)
TK
Xem chi tiết
DT
24 tháng 10 2023 lúc 16:51

A = ( 1 + 3^2) + (3^4 + 3^6) + ... + (3^2016 + 3 ^2018 ) + 3 ^ 2020

= 10 + 3^4(1+3^2) + .... + 3^2016.(1+3^2) + 3^2020

= 10.(1+3^4+...+3^2016) + 3^2020

Mà : 3^n có tận cùng là : 1,3,9,7

Do đó 3 ^2020 không chia hết cho 10

Lại có 10.(1+3^4+...+3^2016) chia hết cho 10

=> A không chia hết cho 10

Bình luận (0)
VD
24 tháng 10 2023 lúc 16:58

A=(1+32)+(34+36)+ ... + (32018+32020)

  =(1+32)+ 34(1+32)+....+32018(1+32)

  =(1+32) (1+34+....+32018)

  =10 (1+34+....+32018) ⋮10 ( do 10 ⋮10)

Vậy A=1+32+34+36+ ... +32020 ⋮ 10 (đpcm)

 

Bình luận (0)
H24
24 tháng 10 2023 lúc 17:07

\(A=1+3^2+3^4+3^6+...+3^{2020}\\=(1+3^2)+(3^4+3^6)+(3^8+3^{10})+...+(3^{2018}+3^{2020})\\=10+3^4\cdot(1+3^2)+3^8\cdot(1+3^2)+...+3^{2018}\cdot(1+3^2)\\=10+3^4\cdot10+3^8\cdot10+..+3^{2018}\cdot10\\=10\cdot(1+3^4+3^8+...+3^{2018})\)

Vì \(10\cdot(1+3^4+3^8+...+3^{2018})\vdots10\)

nên \(A\vdots10\)

Bình luận (0)
H24
Xem chi tiết
TG
12 tháng 9 2021 lúc 9:53

\(A=3+3^2+3^3+...+3^{2020}=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}.\left(1+3\right)=\left(1+3\right)\left(3+3^3+...+3^{2019}\right)=4.\left(3+3^3+...+3^{2019}\right)⋮4\)

Bình luận (0)
HH
18 tháng 10 2021 lúc 18:37

A=3 + 3+ 3+ ... + 32020 =3 (1 + 3) + 3(1 + 3) + ... + 32019 . (1 + 3)

=(1 + 3)(3 + 33+...+32019)=4 . ( 3 + 33+ ... + 32019) ⋮ 4 

 

Bình luận (0)
NH
Xem chi tiết
NT
20 tháng 11 2023 lúc 20:53

a: (x-3)(y+1)=15

=>\(\left(x-3\right)\left(y+1\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)

=>(x-3;y+1)\(\in\){(1;15);(15;1);(-1;-15);(-15;-1);(3;5);(5;3);(-3;-5);(-5;-3)}

=>(x,y)\(\in\){(4;14);(18;0);(2;-16);(-12;-2);(6;4);(8;2);(0;-6);(-2;-4)}

b: Sửa đề:\(m=1+3+3^2+3^3+...+3^{99}+3^{100}\)

\(m=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(=4+13\left(3^2+3^5+...+3^{98}\right)\)

=>m chia 13 dư 4

\(m=1+3+3^2+...+3^{99}+3^{100}\)

\(=1+\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=1+3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)

\(=1+40\left(3+3^5+...+3^{97}\right)\)

=>m chia 40 dư 1

Bình luận (1)
LP
Xem chi tiết