Những câu hỏi liên quan
LP
Xem chi tiết
DN
10 tháng 10 2023 lúc 14:36

vãi

Bình luận (0)
NP
12 tháng 10 2023 lúc 19:57

Mày gửi cái gì vậy

Bình luận (0)
BH
17 tháng 10 2023 lúc 18:27

A  Đu

Bình luận (0)
NN
Xem chi tiết
AH
27 tháng 3 2021 lúc 1:54

Yêu cầu đề bài là gì vậy bạn?

Bình luận (1)
NH
Xem chi tiết
AH
29 tháng 6 2021 lúc 23:19

Điều kiện của $a$ là gì vậy bạn?

Bình luận (0)
NN
Xem chi tiết
NT
25 tháng 3 2016 lúc 2:47

Đặt \(w=y-1+yi,y\in R\)

Là đủ nếu chứng minh được, tồn tại số thực duy nhất x sao cho 

\(\left(x-1\right)^2+x^2\le\left(y-1\right)^2+y^2\) với mọi \(y\in R\)

Nói cách khác, x là điểm cực tiểu hàm số :

\(f:R\rightarrow R,f\left(y\right)=\left(y-1\right)^2+y^2=2y^2-2y+1=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\)

Do đó, điểm cực tiểu là 

\(x=\frac{1}{2}\Rightarrow z=-\frac{1}{2}+\frac{1}{2}i\)

Bình luận (0)
NN
Xem chi tiết
H24
30 tháng 3 2021 lúc 5:42

undefined

Bình luận (0)
HP
Xem chi tiết
AN
28 tháng 11 2016 lúc 10:09

Với i = 1 thì

\(1+x_1\ge1+x_1\) (đúng)

Giả sử bất đẳng thức đúng đến i = k thì ta có

\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\ge1+x_1+x_2+...+x_k\)

Đặt \(1+x_1+x_2+...+x_k=y\)

\(\Rightarrow x_1+x_2+...+x_k=y-1\)

\(\Rightarrow y-1\)cùng dấu với xn

Ta chứng minh bất đẳng thức đúng với \(i=k+1\)

Ta có

\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\left(1+x_{k+1}\right)\ge\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\)

Ta chứng minh

\(\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\ge1+x_1+x_2+...+x_k+x_{k+1}\)

\(\Leftrightarrow y\left(1+x_{k+1}\right)\ge y+x_{k+1}\)

\(\Leftrightarrow x_{k+1}\left(y-1\right)\ge0\)

Bất đẳng thức này đúng vì \(x_{k+1};\left(y-1\right)\)là hai số cùng dấu

\(\Rightarrow\)Bất đẳng thức đúng với i = k + 1

Vậy bất đẳng thức ban đầu là đúng (phương pháp quy nạp nhé bạn)

Bình luận (0)
TT
Xem chi tiết
HF
Xem chi tiết
TD
Xem chi tiết