Cho \(x_i\in\left[1;\sqrt{2}\right]\)
Chứng minh: \(\frac{\sqrt{x_1^2}-1}{x_2}+\frac{\sqrt{x_2^2}-1}{x_3}+...+\frac{\sqrt{x_n^2}-1}{x_1}\le\frac{n\sqrt{2}}{2}\)
Cho \(n\ge2\), \(x_i\inℝ\), \(i=\overline{1,n}\) thỏa mãn \(\left\{{}\begin{matrix}\sum\limits^n_{i=1}x_i=0\\\sum\limits^n_{i=1}x_i^2=1\end{matrix}\right.\)
Với mỗi tập A khác rỗng, \(A\subset\left\{1,2,...,n\right\}\), ta định nghĩa \(S_A=\sum\limits^{ }_{i\in A}x_i\).
Chứng minh rằng, với mỗi số \(\lambda>0\), số tập A thỏa mãn \(S_A\ge\lambda\) không quá \(\dfrac{2^{n-3}}{\lambda^2}\)
Yêu cầu đề bài là gì vậy bạn?
cho x1, x2,...,x5 và \(\sum\limits^5_{i=1}\dfrac{1}{1+x_i}=1.\)Chứng minh rằng \(\sum\limits^5_{i=1}\dfrac{x_i}{a+x_i^2}\le1\)
Điều kiện của $a$ là gì vậy bạn?
Xét :
\(H=\left\{z\in C,z=x-1+x_i,x\in R\right\}\)
Chứng minh rằng tồn tại duy nhất số phức \(z\in H,\left|z\right|\le\left|w\right|\), mọi \(w\in H\)
Đặt \(w=y-1+yi,y\in R\)
Là đủ nếu chứng minh được, tồn tại số thực duy nhất x sao cho
\(\left(x-1\right)^2+x^2\le\left(y-1\right)^2+y^2\) với mọi \(y\in R\)
Nói cách khác, x là điểm cực tiểu hàm số :
\(f:R\rightarrow R,f\left(y\right)=\left(y-1\right)^2+y^2=2y^2-2y+1=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\)
Do đó, điểm cực tiểu là
\(x=\frac{1}{2}\Rightarrow z=-\frac{1}{2}+\frac{1}{2}i\)
\(\left\{{}\begin{matrix}x_1=1\\x_{n+1}=\sqrt{x_n\left(x_n+1\right)\left(x_n+2\right)\left(x_n+3+1\right)}\end{matrix}\right.\). Đặt \(\dfrac{y_n}{x_n}=\sum\limits^n_{i=1}\dfrac{1}{x_i+2}\). Tìm lim \(y_n\)
CM \(\left(1+x_1\right)\left(1+x_2\right)......\left(1+x_n\right)\ge1+x_1+x_2+...+x_n\) ,với \(x_i>-1\),i=1,n và các xi cùng dấu
Với i = 1 thì
\(1+x_1\ge1+x_1\) (đúng)
Giả sử bất đẳng thức đúng đến i = k thì ta có
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\ge1+x_1+x_2+...+x_k\)
Đặt \(1+x_1+x_2+...+x_k=y\)
\(\Rightarrow x_1+x_2+...+x_k=y-1\)
\(\Rightarrow y-1\)cùng dấu với xn
Ta chứng minh bất đẳng thức đúng với \(i=k+1\)
Ta có
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\left(1+x_{k+1}\right)\ge\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\)
Ta chứng minh
\(\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\ge1+x_1+x_2+...+x_k+x_{k+1}\)
\(\Leftrightarrow y\left(1+x_{k+1}\right)\ge y+x_{k+1}\)
\(\Leftrightarrow x_{k+1}\left(y-1\right)\ge0\)
Bất đẳng thức này đúng vì \(x_{k+1};\left(y-1\right)\)là hai số cùng dấu
\(\Rightarrow\)Bất đẳng thức đúng với i = k + 1
Vậy bất đẳng thức ban đầu là đúng (phương pháp quy nạp nhé bạn)
Chứng minh bằng phương pháp quy nạp:
\(x_i>1,\forall i=1,2,.....,n\)thì \(\frac{1}{1+x_i}+\frac{1}{1+x_2}+.....................+\frac{1}{1+x_n}\ge\frac{n}{1+\sqrt[n]{x_1x_2.........x_n}}\)
Chứng minh rằng: \(n^3+m^3⋮6\Leftrightarrow n+m⋮6\left(\forall m,n\inℤ\right)\)
Từ đó chứng minh công thức tổng quát:
\(x^3_1+x^3_2+x^3_3+......+x^3_n⋮6\Leftrightarrow x_1+x_2+x_3+......+x_n⋮6\left(x_i\inℤ,i=1;2;3;...;n\right)\)
Chứng minh rằng với mọi số tự nhiên \(n\ge3\) luôn tồn tại một cách sắp xếp bộ n số 1, 2, 3, ... n thành \(x_1,x_2,x_3,...,x_n\)sao cho \(x_j\ne\frac{x_i+x_k}{2}\) với mọi bộ số (i;j;k) mà \(1\le i\le j\le k\le n.\)