Những câu hỏi liên quan
CM
Xem chi tiết
DH
22 tháng 1 2021 lúc 14:56

\(\widehat{KIM}+\widehat{KMI}=90^o\)(hai góc phụ nhau) 

\(\widehat{IMN}+\widehat{IMP}=90^o\)(hai góc phụ nhau) 

\(\widehat{KMI}=\widehat{IMP}\)(vì \(MI\)là tia phân giác của \(\widehat{PMK}\))

Suy ra \(\widehat{IMN}=\widehat{KIM}\).

Xét tam giác \(NIM\)có \(\widehat{IMN}=\widehat{KIM}\)(cmt) 

suy ra \(\Delta NIM\)cân tại \(N\)

suy ra \(NI=NM\).

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
TH
9 tháng 12 2016 lúc 7:27

Ta có hình vẽ

M N P I

a/ Xét tam giác MNI và tam giác MPI có:

MN = MP (GT)

\(\widehat{NMI}\)=\(\widehat{PMI}\) (GT)

MI: cạnh chung

=> tam giác MNI = tam giác MPI (c.g.c)

=> NI = IP (2 cạnh tương ứng)

b/ Ta có: tam giác MNI = tam giác MPI (câu a)

=> \(\widehat{MIN}\)=\(\widehat{MIP}\) (2 góc tương ứng)

\(\widehat{MIN}\)+\(\widehat{MIP}\)=1800 (kề bù)

=> \(\widehat{MIN}\)=\(\widehat{MIP}\)=900

=> MI \(\perp\)NP (đpcm)

Bình luận (0)
DC
Xem chi tiết
NT
11 tháng 3 2020 lúc 17:30

M N P K I

Ta có:

\(\widehat{NMK}=\widehat{MPN}+\widehat{MNK}\left(=90^0\right)\)

Vì MI là tia phân giác \(\widehat{KMP}\)

=> \(\widehat{NMI}=\widehat{NMK}+\widehat{KMI}=\widehat{MPN}+\widehat{IMP}=\widehat{MIN}\)

=> Tam giác NMI cân tại N

=> NM = NI ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
DL
10 tháng 1 2022 lúc 20:47

a, xét tam giá HNM và tam giác MNP có chung :

góc MNP

cạnh MN 

cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP 

=> tam giác HNM đồng dạng MNP (c-g-c)

b,

áp dụng đ/l pytago vào tam giác vuông MNP :

=>NP=15cm 

MH.NP =NM.MP

MH.15=9.12

=>MH=7,2cm

áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):

=>NH=5,4cm

HP=NP-NH

HP=15-5,4=9,6cm

c, 

vì MI là phân giác của góc M 

=> MI là trung tuyến của tam giác MNP nên:

NI=IP 

mà NI+IP=15cm

=> NI=IP =7,5cm

Bình luận (0)
BB
Xem chi tiết
NT
26 tháng 8 2021 lúc 23:19

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔNMK có NM=NK

nên ΔNMK cân tại N

mà \(\widehat{MNK}=60^0\)

nên ΔNMK đều

Bình luận (0)
NT
26 tháng 8 2021 lúc 23:20

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

Bình luận (0)
BB
Xem chi tiết
NT
26 tháng 8 2021 lúc 23:10

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔMNK có NM=NK

nên ΔMNK cân tại N

Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)

nên ΔMNK đều

Bình luận (0)
NT
26 tháng 8 2021 lúc 23:18

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

Bình luận (0)
CH
Xem chi tiết
DL
14 tháng 3 2021 lúc 20:42

Xét tam giác MNI và MPI có

       MI là cạnh chung

       MN = MP( tam giác MNP cân)

       Góc MIN = góc MIP = 90°

=> Tam giác MIN = tam giác MIP( cgv - ch)

IN = IP = 5 cm nên I là trung điểm của NP

b) Tam giác MIN vuông tại I có

NI2 + MI2 = MN2(  định lí Pytago)

MI2 + 52 = 142

MI2 + 25 = 196

MI2 = 144

MI=12

c) Xét tam giác PHI và PKI có

         MI là cạnh chung

         Góc HMI = KMI ( tam giác NMI = PMI )

          Góc IHM = IKM = 90° 

=》 Tam giác HMI = KMI ( ch - gn)

=》IH=IK

Bình luận (0)
PB
2 tháng 4 2021 lúc 20:34

lolangngaingungngoamnhonhungoho

Bình luận (0)
KH
Xem chi tiết
TB
25 tháng 4 2019 lúc 15:18

Đề sai rồi PN là cạnh huyền mà sao = MN được

Bình luận (0)
PV
Xem chi tiết