Những câu hỏi liên quan
CT
Xem chi tiết
LB
26 tháng 1 2019 lúc 23:18

a) x(x+1)(x^2+x+1)=42

=> (x^2+x)(x^2+x+1)=42 (1)

Đặt x^2+x=t

=> x^2+x+1=t+1

=> pt (1) có dạng: t(t+1)=42

=> t^2+t=42

=> 4t^2+4t=168

=> 4t^2+4t+1=169

=> (2t+1)^2=(+-13)^2

Xong tìm t và tự tìm nốt x

b) x(x+1)(x+2)(x+3)=24

=> x(x+3)(x+1)(x+2)=24

=> (x^2+3x)(x^2+3x+2)=24

Đặt x^2+3x+1=t

=> x^2+3x=t-1 và x^2+3x+2=t+1

Xong thay vào tìm t và tự tìm x.

Bình luận (0)
NT
26 tháng 1 2019 lúc 23:20

a, \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)

Đặt x^2+x=a

=>\(a^2+a=42\)

\(a^2+a-42=0\)

\(a^2+7a-6a-42=0\)

\(\left(a+7\right)\left(a-6\right)=0\)

\(\left(x^2+x+7\right)\left(x^2+x-6\right)=0\)

\(\left(x^2+x+7\right)\left(x-2\right)\left(x+3\right)=0\)

x^2+x+7>0

=>(x-2)(x-3)=0

=>x=2,3

b,x(x+1)(x+2)(x+3)=24

[x(x+3)][(x+1)(x+2)]=24

(x^2+3x)(x^2+3x+2)=24

Đặt x^2+3x=a

=>a(a+2)-24=0

=>a^2+2a-24=0

=>a^2+6a-4a-24=0

=>(a-4)(a+6)=0

=>(x^2+3x-4)(x^2+3x+6)=0

=>(x-1)(x+4)(x^2+3x+6)=0

vì (x^2+3x+6)>0

=>(x-1)(x+4)=0

Bình luận (0)
H24
26 tháng 1 2019 lúc 23:20

b)

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)

\(\Leftrightarrow\left(x^2+3x\right).\left(x^2+3x+2\right)=24\)

Đặt \(\left(x^2+3x+1\right)=a\)

Ta có: \(\left(a-1\right).\left(a+1\right)=24\)

\(\Leftrightarrow a^2-1=24\)

\(\Leftrightarrow a^2=25\Leftrightarrow a=\pm5\)

TH1: \(a=5\)

\(\Rightarrow x^2+3x+1=5\)

\(\Leftrightarrow x^2+3x-4=0\)

\(\Leftrightarrow\left(x-1\right).\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}}\)

TH2: \(a=-5\)

\(\Rightarrow x^2+3x+1=-5\)

\(\Leftrightarrow x^2+3x+6=0\)

\(\Leftrightarrow x^2+2.\frac{3}{2}x+\frac{9}{4}+\frac{15}{4}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\)=> Vô nghiệm

Vậy tập nghiệm của phương trình là S = {1;4}

Bình luận (0)
HD
Xem chi tiết
H24
27 tháng 6 2016 lúc 21:54

oho

Bình luận (0)
H24
12 tháng 7 2023 lúc 16:34

Mày nhìn cái chóa j

Bình luận (0)
TL
Xem chi tiết
H24
11 tháng 1 2023 lúc 12:56

Bài `1:`

`h)(3/4x-1)(5/3x+2)=0`

`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`

______________

Bài `2:`

`b)3x-15=2x(x-5)`

`<=>3(x-5)-2x(x-5)=0`

`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`

`d)x(x+6)-7x-42=0`

`<=>x(x+6)-7(x+6)=0`

`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`

`f)x^3-2x^2-(x-2)=0`

`<=>x^2(x-2)-(x-2)=0`

`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`

`h)(3x-1)(6x+1)=(x+7)(3x-1)`

`<=>18x^2+3x-6x-1=3x^2-x+21x-7`

`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`

`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`

`j)(2x-5)^2-(x+2)^2=0`

`<=>(2x-5-x-2)(2x-5+x+2)=0`

`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`

`w)x^2-x-12=0`

`<=>x^2-4x+3x-12=0`

`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`

Bình luận (0)
H24
11 tháng 1 2023 lúc 12:58

`m)(1-x)(5x+3)=(3x-7)(x-1)`

`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`

`<=>(1-x)(5x+3+3x-7)=0`

`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`

`p)(2x-1)^2-4=0`

`<=>(2x-1-2)(2x-1+2)=0`

`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`

`r)(2x-1)^2=49`

`<=>(2x-1-7)(2x-1+7)=0`

`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`

`t)(5x-3)^2-(4x-7)^2=0`

`<=>(5x-3-4x+7)(5x-3+4x-7)=0`

`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`

`u)x^2-10x+16=0`

`<=>x^2-8x-2x+16=0`

`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`

Bình luận (0)
TD
Xem chi tiết
NT
Xem chi tiết
NM
11 tháng 9 2021 lúc 8:38

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

Bình luận (0)
AH
11 tháng 9 2021 lúc 8:44

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

Bình luận (0)
HA
Xem chi tiết
H24
24 tháng 2 2021 lúc 19:49

`a,(x+3)(x^2+2021)=0`

`x^2+2021>=2021>0`

`=>x+3=0`

`=>x=-3`

`2,x(x-3)+3(x-3)=0`

`=>(x-3)(x+3)=0`

`=>x=+-3`

`b,x^2-9+(x+3)(3-2x)=0`

`=>(x-3)(x+3)+(x+3)(3-2x)=0`

`=>(x+3)(-x)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$

`d,3x^2+3x=0`

`=>3x(x+1)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$

`e,x^2-4x+4=4`

`=>x^2-4x=0`

`=>x(x-4)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$

Bình luận (0)
ND
24 tháng 2 2021 lúc 19:13

1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)

=> S={-3}

 

Bình luận (0)
NT
24 tháng 2 2021 lúc 20:07

Bài 1: 

a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)

mà \(x^2+2021>0\forall x\)

nên x+3=0

hay x=-3

Vậy: S={-3}

Bài 2: 

b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy: S={3;-3}

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 11 2023 lúc 20:16

a:

ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)

 \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)

=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)

=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)

b:

ĐKXĐ: x<>-3

 \(y=\left(x+3\right)+\dfrac{4}{x+3}\)

=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)

\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)

=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)

y'=0

=>\(\left(x+3\right)^2-4=0\)

=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)

=>(x+5)(x+1)=0

=>x=-5 hoặc x=-1

c:

ĐKXĐ: x<>-2

 \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)

=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)

=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)

\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)

d: 

ĐKXĐ: x<>2

\(y=x-2+\dfrac{9}{x-2}\)

=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)

\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)

=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)

y'=0

=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)

=>\(\left(x-2\right)^2-9=0\)

=>(x-2-3)(x-2+3)=0

=>(x-5)(x+1)=0

=>x=5 hoặc x=-1

Bình luận (0)
H24
Xem chi tiết
NL
18 tháng 4 2021 lúc 22:48

TH1: \(x\ge2\)

\(\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=4\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\)

\(\Leftrightarrow x^4-5x^2=0\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\sqrt{5}\left(loại\right)\\x=\sqrt{5}\end{matrix}\right.\)

TH2: \(x< 2\)

\(-\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=4\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=-4\)

\(\Leftrightarrow x^4-5x^2+8=0\)

\(\Leftrightarrow\left(x^2-\dfrac{5}{2}\right)^2+\dfrac{7}{4}=0\) (vô nghiệm)

Vậy \(x=\sqrt{5}\)

Bình luận (0)
2D
Xem chi tiết
XO
1 tháng 2 2023 lúc 23:48

1) |x| + x2 - x = x  + 10 (1)

Nếu x < 0 thì 

|x| = - x 

Khi đó (1) <=> x2 - 3x - 10 = 0

Có \(\Delta=\left(-3\right)^2-4.\left(-10\right).1=49>0\)

=> Phương trình 2 nghiệm : \(x_1=\dfrac{3+\sqrt{49}}{2}=5\left(\text{loại}\right);x_2=\dfrac{3-\sqrt{49}}{2}=-2\)

Nếu \(x\ge0\Leftrightarrow\left|x\right|=x\)

Phương trình (1) <=> x2 - x - 10 = 0

\(\Delta=\left(-1\right)^2-4.\left(-10\right).1=41>0\)

=> Phương trình 2 nghiệm \(x_1=\dfrac{1+\sqrt{41}}{2};x_2=\dfrac{1-\sqrt{41}}{2}\left(\text{loại}\right)\)

Vậy tập nghiệm phương trình \(S=\left\{-2;\dfrac{1+\sqrt{41}}{2}\right\}\)

Bình luận (0)
XO
1 tháng 2 2023 lúc 23:50

2) x2 - 1 + x2 - 4 = 3

<=> 2x2 = 8

<=> x2 = 4

<=> \(x=\pm2\)

Tập nghiệm \(S=\left\{2;-2\right\}\)

Bình luận (0)