cho x,y,z là số dương thỏa mãn x+y+z = 6 . tìm GTNN và GTLN của A = \(x^2+y^2+z^2\)
cho x,y ,z dương thỏa mãn x +y +z = 6. tìm GTLN và GTNN của A = \(x^2+y^2+z^2\)
Bài này chỉ có min, không có max của A nhé bạn
Muốn có max thì x;y;z phải không âm
Cho x,y,z là các số thực dương thỏa mãn: x^2+y^2+z^2=2.Tìm GTNN và GTLN của P=\(\dfrac{x}{2+yz}+\dfrac{y}{2+zx}+\dfrac{z}{2+xy}\)
Ta thấy
72
=
2
3
.
3
2
72=2
3
.3
2
nên a, b có dạng
{
�
=
2
�
3
�
�
=
2
�
.
3
�
{
a=2
x
3
y
b=2
z
.3
t
với
�
,
�
,
�
,
�
∈
N
x,y,z,t∈N và
�
�
�
{
�
,
�
}
=
3
;
�
�
�
{
�
,
�
}
=
2
max{x,z}=3;max{y,t}=2.
Theo đề bài, ta có
2
�
.
3
�
+
2
�
.
3
�
=
42
2
x
.3
y
+2
z
.3
t
=42
⇔
2
�
−
1
.
3
�
−
1
+
2
�
−
1
3
�
−
1
=
7
⇔2
x−1
.3
y−1
+2
z−1
3
t−1
=7 (*), do đó
�
,
�
,
�
,
�
≥
1
x,y,z,t≥1
TH1:
�
≥
�
,
�
≤
�
x≥z,y≤t. Khi đó
�
=
3
,
�
=
2
x=3,t=2. (*) thành:
4.
3
�
−
1
+
3.
2
�
−
1
=
7
4.3
y−1
+3.2
z−1
=7
⇔
�
=
�
=
1
⇔y=z=1
Vậy
{
�
=
24
�
=
18
{
a=24
b=18
(nhận)
TH2: KMTQ thì giả sử
�
≥
�
,
�
≥
�
x≥z,y≥t. Khi đó
�
=
3
,
�
=
2
x=3,z=2. (*) thành
4.
3
�
−
1
+
2.
3
�
−
1
=
7
4.3
y−1
+2.3
t−1
=7, điều này là vô lí.
Vậy
(
�
,
�
)
=
(
24
,
18
)
(a,b)=(24,18) hay
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.
Chox y z là các số thực dương thỏa mãn x+y+z=6 tìm GTLN và GTNN của biểu thức \(x^2+y^2+z^2\)
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{6^2}{3}=12\)
Dấu "=" xảy ra <=> x = y = z = 2
GTNN của x^2 + y^2 + z^2 là 12 tại x = y = z = 2
cho \(x,y,z\ge0\) thỏa mãn \(x+y+z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2+y^2+z^2\)
Lời giải:
Tìm min:
Áp dụng BĐT AM-GM:
$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$
Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$
--------------
Tìm max:
$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$
Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$
$\Rightarrow A=36-2(xy+yz+xz)\leq 36$
Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.
cho x,y,z dương thỏa mãn \(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\). tìm GTNN và GTLN của \(P=\dfrac{2x+z}{x+2z}\)
Bạn tham khảo:
Cho ba số thực dương x;y;z thoả mãn \(5\left(x y z\right)^2\ge14\left(x^2 y^2 z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24
bài 1:CHo x,y,z dương thỏa mãn : 0 <= x<= 4<=y<=z<=7 và x+y+z=15.Tìm GTLN của p=xyz
bài 2: Cho a,b là 2 số tự nhiên khác 0 và a+b=n.Tìm GTLN,GTNN của Q=ab
bài 3: Tìm x,y thuộc z biết 5x^2 +2y^2 +10x + 4y =6
. Với x,y,z là các số thực dương thỏa mãn\(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\).Tìm GTNN và GTLN của
Q=\(\dfrac{2x+z}{2z+x}\)
Cho ba số thực dương x;y;z thoả mãn \(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24
Cho các số thực dương thỏa mãn điều kiện x^2+y^2+z^2<=2018 Tìm GTNN và GTLN A=x+y+z+xy+xz+yz
Cho các số thức x,y,z thỏa mãn 2(y^2+yz+z^2)+3x^2=36.Tìm GTLN và GTNN của biểu thức A=x+y+z