cho tam giác DEF có DE=EF,M là trung điểm của EF chứng minh rằng DM là tia phân giác của góc D
Cho tam giác DEF có DE = DF. Tia phân giác của góc D cắt EF tại M.
a) Chứng minh: ∆DEM = ∆DFM.
b) Chứng minh DM vuông góc với EF
c) Chứng minh M là trung điểm của cạnh EF.
a) Xét \(\Delta\)DEM và \(\Delta\)DFM có:
DM chung
\(E\widehat{D}M=F\widehat{D}M\left(Vì.DM.là.phân.giác.của.E\widehat{D}F\right)\)
DE=DF(giả thiết)
\(\Rightarrow\Delta=\Delta\left(c.g.c\right)\)
b)Chịu:)
c)Ta có \(\Delta DEM=\Delta DFM\left(cmt\right)\)
=>ME=MF(2 góc tương ứng)
=>M là trung điểm của FE
Cho tam giác DEF, tia phân giác của góc D cắt EF tại M, DE=DF. Chứng minh rằng:
a,Tam giác DEM= tam giác DFM.
b, M là trung điểm của EF.
c,DM vuông góc với EF.
Cho tam giác DEF có DE<DF. Gọi M là trung điểm của EF. Trên tia đối của tia DM lấy điểm K sao cho MD=MK. a/ Chứng minh tam giác DEM= tam giác KFM.Từ đó chứng minh DE//KF. b/ Kẻ DH vuông góc với EF. Trên tia DH lấy điểm P sao cho HD=HP. Chứng minh EF là tia phân giác của góc DEP
Vẽ hình giúp mình với nhé mình cảm ơn nhiều
a) Xét △DEM và △KFM có
DM=KM(giả thiết)
góc DME=góc KMF(2 góc đối đỉnh)
EM=MF(Vì M là trung điểm của EF)
=>△DEM =△KFM(c-g-c)
=> góc MDE=góc MKF (2 góc tương ứng)
hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF
=>DE//KF
b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ
Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có
HD=HP
HE là cạnh chung
=> △DHE= △PHE(2 cạnh góc vuông)
=> góc DEM=góc PEM
=> EH là tia phân giác của góc DEP
hay EF là tia phân giác của góc DEP
vậy EF là tia phân giác của góc DEP
cho tam giác DEF có DE=DF . Gọi M là trung điểm của EF chứng minh rằng
A, tam giác DEM = tam giác DFM
B,chứng minh góc DME = góc DMF từ đo suy ra DM vuống góc EF
C, trên tia đối của tia MD lấy điểm N sao cho M là trung điểm của DN chứng minh DE// NF
D , Vẽ điểm I thuộc DE , điểm k thuộc đoạn NF sao cho DI=NK chứng minh ba điển I,M,K thẳng hàng
a: Xét ΔDEM và ΔDFM có
DE=DF
DM chung
EM=FM
Do đó: ΔDEM=ΔDFM
Cho tam giác DEF có DE = DF. Lấy M là trung điểm của EF. Chứng minh:
a)
b) DM là phân giác của góc EDF.
c) DM là đường trung trực của đoạn EF.
b) Xét tam giác DEF có: DE = DF (gt)
=> Tam giác DEF cân tại D.
Mà DM là trung tuyến của tam giác DEF (M là trung điểm của EF).
=> DM là phân giác của góc EDF (tính chất các đường trong tam giác cân).
c) Xét tam giác DEF cân tại D:
DM là trung tuyến của tam giác DEF (M là trung điểm của EF).
=> DM là đường trung trực của đoạn EF (tính chất các đường trong tam giác cân).
cho tam giác DEF có DE bé hớn DF tia phân giác của góc D cắc cạnh EF tại M trên cạnh DF lấy điểm N sao cho DE=DN chứng minh a tam giác DEM bằng tam giác DNM chứng minh b góc DMF lớn hơn góc DME c gọi K là trung điểm của EF trên tia đới của tia KD lấy G sao cho KG=KD chứng minh DF+FG lớn hơn 2FK
Cho tam giác DEF có DE=6cm, DF=8cm, EF=10cm. Vẽ tia phân giác của góc E cắt cạnh DF tại M. Trên cạnh EF lấy điểm N sao cho EN=ED. Đường thẳng NM cắt đường thẳng DE tại I.
a) Chứng minh tam giác DEF là tam giác vuông
b) MN vuông góc EF rồi so sánh DM và MF
c) Gọi P, Q lần lượt là trung điểm của DN và IF. Chứng minh 3 điểm P, M, Q thẳng hàng
a/ Vì EF2=DE2+DF2 (Pytago)
=> Tam giác DEF vuông tại D
Bài 5. (3,5 điểm) Cho tam giác DEF có DE = DF. Gọi M là trung điểm của EF. a. Chứng minh: ∆DME = ∆DMF b. Chứng minh: DM EF c. Vẽ H là trung điểm DF. Trên tia đối của tia HE lấy điểm P sao cho HE = HP. Chứng minh: DP//EF d. Vẽ K là trung điểm DE. Trên tia đối của tia KF lấy điểm Q sao cho KF = KQ. Chứng minh 3 điểm P, D, Q thẳng hàng và D là trung điểm QP. nhanh nha mình cần gấp cảm ơn
a: Xét ΔDME và ΔDMF có
DM chung
ME=MF
DE=DF
Do đó: ΔDME=ΔDMF
Bài 5. (3,5 điểm) Cho tam giác DEF có DE = DF. Gọi M là trung điểm của EF. a. Chứng minh: ∆DME = ∆DMF ///b. Chứng minh: DM EF //c. Vẽ H là trung điểm DF. Trên tia đối của tia HE lấy điểm P sao cho HE = HP. Chứng minh: DP//EF d) Vẽ K là trung điểm DE. Trên tia đối của tia KF lấy điểm Q sao cho KF = KQ. Chứng minh 3 điểm P, D, Q thẳng hàng và D là trung điểm
mình đang cần gấp giúp mình nha cảm ơn!
a: Xét ΔDME và ΔDMF có
DM chung
ME=MF
DE=DF
Do đó: ΔDME=ΔDMF