phân tích x^2 -(1-x^2)-4 +4*x^2
Phân tích thành nhân tử:
`4(x-2)(x+1)+(2x-4)^2 +(x+1)^2`
`x^9 -x^7 -x^6 -x^5 +x^4 +x^3 +x^2 -1`
a: =4(x-2)(x+1)+4(x-2)^2+(x+1)^2
=(2x-4)^2+2*(2x-4)(x+1)+(x+1)^2
=(2x-4+x+1)^2=(3x-3)^2=9(x-1)^2
b: =x^7(x^2-1)-x^5(x+1)+x^3(x+1)+(x^2-1)
=(x+1)[x^7(x-1)-x^5+x^3+x-1]
=(x+1)[x^7(x-1)-x^3(x-1)(x+1)+(x-1)]
=(x+1)(x-1)(x^7-x^4-x^3+1)
=(x+1)(x-1)(x^3-1)(x^4-1)
=(x+1)(x-1)^2*(x^2+x+1)(x^2+1)(x-1)(x+1)
=(x+1)^2*(x-1)^3*(x^2+1)(x^2+x+1)
phân tích đa thức A=(x^2+x)^2+2(x^2+x)+1 ; B= (x-a)^4-(x+a)^4 thành phân tử
\(A=\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)
\(B=\left(x-a\right)^4-\left(x+a\right)^4=\left[\left(x-a\right)^2\right]^2-\left[\left(x+a\right)^2\right]^2\)
\(=\left[\left(x-a\right)^2-\left(x+a\right)^2\right]\left[\left(x-a\right)^2+\left(x+a\right)^2\right]\)
\(=\left(x-a-x-a\right)\left(x-a+x+a\right)\left(x^2-2xa+a^2+x^2+2ax+a^2\right)\)
\(=-2a.2x\left(2x^2+2a^2\right)=-8ax\left(x^2+a^2\right)\)
1) phân tích đa thức thành nhân tử
a) 4x^4 - 32x^2 + 1
b) x^6 + 27
c) 3(x^4 + x^2 + 1) - (x^2 - x + 1)
d) (2x^2 -4)^2 + 9
2) phân tích đa thức thành nhân tử
a) 4x^4 + 1
b) 64x^4 + y^4
c) x^8 + x^4 + 1
`x^4 +1`
`4x^4 y^4 +1`
`x^4 +3x^2 +4`
`x^2 +3xy+2y^2`
phân tích thành nhân tử
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)
\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)
______
\(4x^4y^4+1\)
\(=4x^4y^4+4x^2y^2+1-4x^2y^2\)
\(=\left(2x^2y^2+1\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2y^2-2xy+1\right)\left(2x^2y^2+2xy+1\right)\)
______
\(x^4+3x^2+4\)
\(=x^4+x^3+2x^2-x^3-x^2-2x+2x^2+2x+4\)
\(=\left(x^4+x^3+2x^2\right)-\left(x^3+x^2+2x\right)+\left(2x^2+2x+4\right)\)
\(=x^2\left(x^2+x+2\right)-x\left(x^2+x+2\right)+2\left(x^2+x+2\right)\)
\(=\left(x^2+x+2\right)\left(x^2-x+2\right)\)
______
\(x^2+3xy+2y^2\)
\(=x^2+xy+2xy+2y^2\)
\(=x\left(x+y\right)+2y\left(x+y\right)\)
\(=\left(x+2y\right)\left(x+y\right)\)
Phân tích thành nhân tử
\(x^2+2x+1+4x+4\)
\(2x^3+6x^2+x^2+3x^2\)
\(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{4}x+1\)
a: \(x^2+2x+1+4x+4\)
\(=\left(x^2+2x+1\right)+\left(4x+4\right)\)
\(=\left(x+1\right)^2+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x+1+4\right)\)
\(=\left(x+1\right)\left(x+5\right)\)
b: Sửa đề: \(2x^3+6x^2+x^2+3x\)
\(=2x^2\left(x+3\right)+x\left(x+3\right)\)
\(=\left(x+3\right)\left(2x^2+x\right)\)
\(=x\left(x+3\right)\left(2x+1\right)\)
c: \(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{4}x+1\)
\(=\dfrac{1}{4}x\left(\dfrac{1}{4}x+1\right)+\left(\dfrac{1}{4}x+1\right)\)
\(=\left(\dfrac{1}{4}x+1\right)\left(\dfrac{1}{4}x+1\right)=\left(\dfrac{1}{4}x+1\right)^2\)
phân tích đa thức sau thành nhân tử
a) (x-1)4-2(x2-2x+1)+1
b) (x+1)(x+2)(x+4)(x+5)-4
\(a,=\left(x-1\right)^4-2\left(x-1\right)^2+1\\ =\left[\left(x-1\right)^2-1\right]^2\\ =\left(x^2-2x-2\right)^2\\ b,=\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]-4\\ =\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\\ =\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36\\ =\left(x^2+6x+4\right)\left(x^2+6x+9\right)\\ =\left(x+3\right)^2\left(x^2+6x+4\right)\)
phân tích đa thức thành nhân tử:(x^2-x-1)^4+7x^2(x^2-x-1)^2+5x^4
phân tích đa thức thành nhân tử -6(-x^2-x-1)^4+x^2(-x^2-x+1)+5x^4
Phân tích thành nhân tử
\(16-x^2\)
`16-3x+1^2`
`x^4 y^4 +4x^2 y^2 +4`
`y^2 -4y+4-x^2`
\(16-x^2\)
\(=\left(4-x\right)\left(4+x\right)\)
\(---\)
\(16-3x+1^2\) (kt lại đề bài nhé)
\(x^4y^4+4x^2y^2+4\)
\(=\left[\left(xy\right)^2\right]^2+2\cdot\left(xy\right)^2\cdot2+2^2\)
\(=\left[\left(xy\right)^2+2\right]^2=\left(x^2y^2+2\right)^2\)
\(---\)
\(y^2-4y+4-x^2\)
\(=y^2-2\cdot y\cdot2+2^2-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-2-x\right)\left(y-2+x\right)\)