Những câu hỏi liên quan
ND
Xem chi tiết
NL
25 tháng 12 2020 lúc 21:08

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)\left(1+c\right)}{64\left(1+b\right)\left(1+c\right)}}=\dfrac{3}{4}a\)

Tương tự: \(\dfrac{b^3}{\left(1+a\right)\left(1+c\right)}+\dfrac{1+a}{8}+\dfrac{1+c}{8}\ge\dfrac{3}{4}b\)

\(\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{1+a}{8}+\dfrac{1+c}{8}\ge\dfrac{3}{4}c\)

Cộng vế:

\(VT+\dfrac{3+a+b+c}{4}\ge\dfrac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{1}{2}\left(a+b+c\right)-\dfrac{3}{4}\ge\dfrac{1}{2}.3\sqrt[3]{abc}-\dfrac{3}{4}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
CK
Xem chi tiết
H24
25 tháng 8 2021 lúc 18:29

Tìm 2 số tự nhiên liên tiếp có tích bằng
a) 3306 ; b) 7656 ; c) 1806 ; d) 5402

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
LP
13 tháng 5 2023 lúc 18:06

Ta có \(a+b\ge2\sqrt{ab}\) (Cô-si 2 số) và \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\) (Cô-si 2 số)

Nhân theo vế 2 BĐT trên, ta được \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{ab}}=4\)

ĐTXR \(\Leftrightarrow a=b\)

Bình luận (0)
NA
Xem chi tiết
CK
Xem chi tiết
CK
Xem chi tiết
CK
Xem chi tiết
CK
Xem chi tiết
CK
Xem chi tiết