Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

ND

Bài 3. Cho là các số thực dương thỏa mãn Chứng minh rằng 

NL
25 tháng 12 2020 lúc 21:08

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)\left(1+c\right)}{64\left(1+b\right)\left(1+c\right)}}=\dfrac{3}{4}a\)

Tương tự: \(\dfrac{b^3}{\left(1+a\right)\left(1+c\right)}+\dfrac{1+a}{8}+\dfrac{1+c}{8}\ge\dfrac{3}{4}b\)

\(\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{1+a}{8}+\dfrac{1+c}{8}\ge\dfrac{3}{4}c\)

Cộng vế:

\(VT+\dfrac{3+a+b+c}{4}\ge\dfrac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{1}{2}\left(a+b+c\right)-\dfrac{3}{4}\ge\dfrac{1}{2}.3\sqrt[3]{abc}-\dfrac{3}{4}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
QT
Xem chi tiết
DA
Xem chi tiết
KR
Xem chi tiết
DD
Xem chi tiết
AL
Xem chi tiết