cho 3 đường thẳng d:y=3x,d1:y=-1/3x và d2;y=-x+4
a) vẽ 3 đường thẳng trên cùng 1 mptd
b)gọi giao điểm của d với d1 và d2 lần lượt là A và B.Tìm tọa độ giao điểm của A và B
c)CM:tam giác OAB vuông
d)Tính các góc của tam giác OAB
a: Tọa độ giao điểm của đường thẳng (d1) và đường thẳng (d2) là:
\(\left\{{}\begin{matrix}3x-1=2x+1\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2x=2+1\\y=2x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3\\y=2\cdot3+1=7\end{matrix}\right.\)
Thay x=3 và y=7 vào (d), ta được:
\(3\left(4m+5\right)-2m+7=7\)
=>\(12m+15-2m=0\)
=>10m=-15
=>m=-3/2
b: để (d)//(d3) thì \(\left\{{}\begin{matrix}4m+5=-3\\-2m+7< >2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4m=-3-5=-8\\-2m< >-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m< >\dfrac{5}{2}\end{matrix}\right.\)
=>m=-2
cho 3 đường thẳng y=3x-2(d1); y=3x-2y=1(d2) và y=(m-2)x+2m-3(d3). tìm m để 3 đường thẳng d1,d2,d3 cùng đi qua 1 điểm
Ta có: (d2): y=3x-2y=1 => y: 3x-2y-1
Phương trình tung độ giao điểm của (d1) và (d2) là:
3x-2 = 3x-2y-1 => 3x-3x+2y=-1+2 => 2y=1 => y = 1/2
=> x = (1/2+2):3 = 5/6
Vậy (d1) và (d2) cùng đi qua điểm C(5/6; 1/2)
Thay x = 5/6 và y = 1/2 vào (d3) ta được: 1/2 = (m-2).5/6+2m-3
=> 1/2 = 5/6m - 5/3 + 2m - 3
=> 31/6 = 17/6 m
=> m = 31/17
Vậy m = 31/17 thì 3 đường thẳng (d1);(d2);(d3) cùng đi qua 1 điểm
Cho đường thẳng d:y=(m-2)x+2+m với m là tham số
a.tìm m để d cắt (d1):y=2x-2m+1 tại một điểm trên trục tung
b. tìm m để d cùng các đường thẳng d1:y=x+2 và d2:y=4-3x đồng quy
c. chứng minh d luôn đi qua 1 điểm cố định với mọi m
a: Để (d) cắt (d1) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}m-2\ne2\\-2m+1=m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne4\\-3m=1\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{3}\)
b: Tọa độ giao điểm của d1 và d2 là:
\(\left\{{}\begin{matrix}x+2=4-3x\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}+2=\dfrac{5}{2}\end{matrix}\right.\)
Thay x=1/2 và y=5/2 vào (d), ta được:
\(\dfrac{1}{2}\left(m-2\right)+2+m=\dfrac{5}{2}\)
=>\(\dfrac{1}{2}m-1+m+2=\dfrac{5}{2}\)
=>\(\dfrac{3}{2}m=\dfrac{3}{2}\)
=>m=1
c: (d): y=(m-2)x+m+2
=mx-2x+m+2
=m(x+1)-2x+2
Tọa độ điểm cố định mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x+1=0\\y=-2x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\cdot\left(-1\right)+2=4\end{matrix}\right.\)
Trong mặt phẳng tọa độ Oxy cho hai đường thẳng (d1): y = -1/3x và (d2): y = 3x-2.
1)Vẽ (d1) và (d2) trên cùng hệ trục.
2) Bằng phép tính tìm tọa độ giao điểm của (d1) và (d2).
3) Cho đường thẳng (d3): y=ax+b. Xác định a và b biết (d3) song song với (d2) và cắt (d1) tại điểm có hoành độ bằng 2.Giup minh voi a!
BÀI 12:
CHO 3 ĐƯỜNG THẲNG d1 y=2x+1,d2 y=3x-1 và d3 y=x+3
CM: d1,d2,d3 đồng quy
PT hoành độ giao điểm \(\left(d_1\right)\) và \(\left(d_2\right)\)
\(2x+1=3x-1\Leftrightarrow x=2\Leftrightarrow y=5\Leftrightarrow A\left(2;5\right)\)
Thay \(x=2;y=5\) vào \(\left(d_3\right)\Leftrightarrow2+3=5\) (đúng)
Do đó \(A\left(2;5\right)\in\left(d_3\right)\)
Vậy \(\left(d_1\right);\left(d_2\right);\left(d_3\right)\) đồng quy tại \(A\left(2;5\right)\)
\(\left\{{}\begin{matrix}2x+1=3x-1\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
Thay x=2 và y=5 vào y=x+3, ta được:
2+3=5(đúng)
Cho 2 đường thẳng: y= -3x -7 (d1) và y=2x+3 (d2)
Tìm tọa độ giao điểm M của hai đường thẳng (d1) , (d2)
Gọi \(A\left(x_0;y_0\right)\) là giao điểm \(\left(d_1\right)\) và \(\left(d_2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}y_0=-3x_0-7\\y_0=2x_0+3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{4}{5}\\y_0=-\dfrac{23}{5}\end{matrix}\right.\)
\(\Rightarrow M\left(-\dfrac{4}{5};-\dfrac{23}{5}\right)\)
Cho hai đường thẳng (d1): 3x - 5y = 1, (d2): y = 4x - 1
Tọa độ giao điểm của 2 đường thẳng (d1) và (d2) là
cho 3 đường thẳng y=3x-2(d1); y=3x-2y=1(d2) và y=(m-2)x+2m-3(d3). tìm m để 3 đường thẳng d1,d2,d3 cùng đi qua 1 điểm
đt d2 : 3x - 2y = 1 => y = 3/2x - 1/2
Hai đt d1 và d2 có hệ số góc khác nhau nên chúng cắt nhau tại điểm M.Xét pt hoành độ : 3x - 2 = 3/2x - 1/2 <=> x = 1 => y = 1.
Vậy tọa độ điểm \(M\left(1;1\right)\)
Để cho d1,d2,d3 cùng đi qua 1 điểm thì d3 phải di qua M.
\(\Rightarrow\left(d_3\right)\in M\Leftrightarrow1=\left(m-2\right).1+2m-3\Leftrightarrow m=2\)
Vậy ...
Cho điểm A(1; 3) và hai đường thẳng d 1 : 2 x − 3 y + 4 = 0 , d 2 : 3 x + y = 0 . Số đường thẳng qua A và tạo với d 1 , d 2 các góc bằng nhau là
A.1
B.2
C.4
D.Vô số
ĐÁP ÁN B
Đường thẳng qua A và tạo với d1d2 các góc bằng nhau khi vuông góc với phân giác của góc tạo bởi d1d2.
Do vậy số lượng đường thẳng cần tìm là 2.