Tính theo mẫu
50 g x 2 =
Cho đa thức: f(x) = \(-3x^2+3x-1+x^4-x^3+3x^2\)
g(x) = \(x^4+x^2-x^3+x-5+5x^3-x^2\)
a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.
b) Tính: A(x) = f(x) - g(x) ; B(x) = f(x) + g(x)
c) Tính: A(x) tại \(x=-2\) ; tại \(x=2\)
\(a,\)
\(\Rightarrow f\left(x\right)=x^4-x^3+3x-1\)
\(\Rightarrow g\left(x\right)=x^4+4x^3+x-5\)
\(b,\)
\(A\left(x\right)=f\left(x\right)-g\left(x\right)=x^4-x^3+3x-1-x^4-4x^3-x+5\)
\(=-5x^3-x+4\)
\(B\left(x\right)=f\left(x\right)+g\left(x\right)=x^4-x^3+3x-1+x^4+4x^3+x-5\)
\(=2x^4+3x^3+4x-6\)
\(c,\)
Thay \(x=-2\) vào \(A\left(x\right)\) , ta được :
\(A\left(x\right)=-5.\left(-2\right)^3+2+4=46\)
Thay \(x=2\) vào \(A\left(x\right)\) , ta được :
\(A\left(x\right)=-5.2^3-2+4=-38\)
Cho 2 đa thức : f [ x ] = x^3 - 5x^2 + 3x + 2 + 3x^2 . g( x ) = -x^3 - x^2 + 6x - 2x^2 - 6x + 2 . a, Thu gọn và sắp xếp các hạng tử của đa thức f ( x ) , g ( x ) theo lũy thừa giảm dần của biến . b, tính f ( x ) + g( x ) và f ( x) - g ( x )
\(f\left(x\right)=x^3-2x^2+3x+2\)
\(g\left(x\right)=-x^3-3x^2+2\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+3x+2+\left(-x^3\right)+3x^2+2\)
\(f\left(x\right)+g\left(x\right)=x^2+3x+4\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+3x+2+x^3+3x^2-2\)
\(f\left(x\right)-g\left(x\right)=2x^3+x^2+3x\)
Tính theo mẫu
Mẫu: 22 g + 47 g = 69 g
163 g + 28 g =
50 g x 2 =
42 g – 25 g =
96 g : 3 =
100 g + 45 g – 26 g =
163 g + 28 g = 191g
50 g x 2 = 100g
42 g – 25 g = 17g
96 g : 3 = 32g
100 g + 45 g – 26 g = 119g.
163 g + 28 g = 191g
50 g x 2 = 100g
42 g – 25 g = 17g
96 g : 3 = 32g
100 g + 45 g – 26 g = 119g
Bài 1:Cho đa thức P(x)=3x^4+2x^2-3x^4-2x^2+2x-5 a)Thu gọn và sắp xếp các hạng tử của P(x) theo lũy thừa giảm dần của biến b)Tính P(-1);P(3) Bài 2:Cho 2 đa thức f(x)=x^2-6x+4 và g(x)=x^2-4x-2 a)Tính f(x)+g(x) b)Tính f(x)-g(x) c)Tìm x sao cho h(x)=f(x)-g(x)=0
Bài 1:
a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)
\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)
\(=2x-5\)
Bài 1:
b)
\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)
\(P\left(3\right)=2\cdot3-5=6-5=1\)
Bài 2:
a) Ta có: f(x)+g(x)
\(=x^2-6x+4+x^2-4x-2\)
\(=2x^2-10x+2\)
Cho 2 đa thức: G(x) = 2\(x^5\) + 5 \(x^4\) - 10\(x^3\) - \(x^2\) - 9\(x^4+4x^2-8-4x\)
H(x) =\(-2x^4-8x^3+x^5+7x+3x^3+x^2-4\)
a) Thu gọn các đa thức G(x), H(x) và sắp xếp theo lũy thừa giảm dần của biến.
b) Tính G(x) + H(x) và G(x) - H(x)
c) Tìm x để G(x) = 2H(x)
a) G(x) = 2x5-4x4-10x3+3x2-4x-8
H(x) = x5-2x4-5x3+x2+7x-4
b) G(x)+H(x)=3x5-6x4-15x3+4x2+3x-12
G(x)-H(x) =x5-2x4-5x3+2x2-11x-4
c) G(x) = 2H(x)
2x5-4x4-10x3+3x2-4x-8=2( x5-2x4-5x3+x2+7x-4)
2x5-4x4-10x3+3x2-4x-8-2( x5-2x4-5x3+x2+7x-4)=0
2x5-4x4-10x3+3x2-4x-8-2x5+4x4+10x3-2x2-14x+8=0
x2-18x=0
x(x-18)=0
x=0 hoặc x-18=0
x=18
a)f(x)=2x2(x-1)-5(x+2)-2x(x-2)+x2(2x-3)-x(x+1)-(3x-2)
a)thu gọn và sắp xếp f(x) và (g) theo lũy thừa giảm dần của biến
b)tính h(x)=f(x)-g(x) và tìm nghiệm của h(x)
f(x)=x3−3x2+2x−5+x2,g(x)=−x3−5x+3x2+3x+4.a.thu gọn các đa thức ên và sắp xếp theo lũy thừa giảm dần của biến.b) tính h(x)+g(x)và q(x)-2.g(x) c) tìm nghiệm của đa thức h(x)
a: f(x)=x^3-2x^2+2x-5
g(x)=-x^3+3x^2-2x+4
b: Sửa đề: h(x)=f(x)+g(x)
h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1
c: h(x)=0
=>x^2-1=0
=>x=1 hoặc x=-1
Cho 2 đa thức
f(x)=-x5+6x3+8x2+12x+x5+\(\dfrac{2}{3}+2x^{4^{ }}+\dfrac{1}{3}\)
g(x)=2x4+6x3+17x2+12x-26
1. Thu gọn và sắp xếp f(x) theo lũy thừa giảm của biến
2. Tính h(x)=f(x)-g(x)
2. Tìm nghiệm h(x)
1.
\(f\left(x\right)=2x^4+6x^3+8x^2+12x+1\)
2.
\(h\left(x\right)=\left(2x^4+6x^3+8x^2+12x+1\right)-\left(2x^4+6x^3+17x^2+12x-26\right)\)
\(=-9x^2+27\)
3.
\(h\left(x\right)=0\Leftrightarrow-9x^2+27=0\)
\(\Leftrightarrow x^2=3\Rightarrow x=\pm\sqrt{3}\)
Cho hai đa thức P(x)=\(2x^2-3x^3+x^2+3x^3-x-1-3x\); Q(x)=\(-3x^2+2x^3-x-2x^3-3x-2\) . a) Thu gọc và sắp xếp hai đa thức P(x), Q(x) theo lũy thừa giảm dần của biến. b) tính f(x)= P(x) - Q(x).Tính g(x)= P(x) - Q(x), tìm x để đa thức g(x) - (6x+1)=0
a: \(P\left(x\right)=3x^2-x-1\)
\(Q\left(x\right)=-3x^2-4x-2\)
b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)
c: Để G(x)-6x-1=0 thì 6x2-3x=0
=>3x(2x-1)=0
=>x=0 hoặc x=1/2