Những câu hỏi liên quan
PB
Xem chi tiết
CT
21 tháng 10 2018 lúc 18:01

Đáp án B

Diện tích hình thang ABCD là:

S A B C D = A B . A D + B C 2 = 5

Vậy thể tích khối chóp S.ABCD là:

V = 1 3 . S A . S A B C D = 1 3 . S A . S A B C D = 1 3 .2.5 = 10 3 (đvtt)

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 9 2019 lúc 1:56

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 2 2018 lúc 12:01

Đáp án D

Dựng HK ⊥ BD, do SH ⊥ BD nên ta có:

(SKH) ⊥ BD =>  Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là góc SKH = 600

 

Lại có: 

Do đó

Vậy 

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 6 2019 lúc 9:47

Chọn D

Ta có 

Gọi H là trung điểm AB thì ,

kẻ , ta có  là góc giữa (SBD) và (ABCD), do đó  = 600

Gọi AM là đường cao của tam giác vuông ABD. Khi đó, ta có:

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 12 2018 lúc 17:50

Chọn đáp án D.

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 12 2019 lúc 4:43

Bình luận (0)
NM
Xem chi tiết
0C
Xem chi tiết
NA
Xem chi tiết
NL
3 tháng 3 2022 lúc 23:54

c.

Từ câu b ta có AICD là hình vuông \(\Rightarrow CI\perp AB\)

Mà \(SA\perp\left(ABCD\right)\Rightarrow SA\perp CI\)

\(\Rightarrow CI\perp\left(SAB\right)\)

Lại có \(CI\in\left(SCI\right)\Rightarrow\left(SCI\right)\perp\left(SAB\right)\)

d.

I là trung điểm AB \(\Rightarrow CI\) là trung tuyến ứng với AB

Lại có \(CI=AD=a\) (AICD là hình vuông) \(\Rightarrow CI=\dfrac{1}{2}AB\)

\(\Rightarrow\Delta ACB\) vuông tại C

\(\Rightarrow BC\perp AC\) (1)

Mà \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\) (2)

(1);(2) \(\Rightarrow BC\perp\left(SAC\right)\)

\(BC\in\left(SBC\right)\Rightarrow\left(SBC\right)\perp\left(SAC\right)\)

Bình luận (0)
NL
3 tháng 3 2022 lúc 23:55

undefined

Bình luận (0)
NL
3 tháng 3 2022 lúc 23:57

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\)

\(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)

\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{3}\Rightarrow\widehat{SDA}=60^0\)

b.

Gọi E là giao điểm AC và DI

I là trung điểm AB \(\Rightarrow AI=\dfrac{1}{2}AB=a\Rightarrow AI=DC\)

\(\Rightarrow AICD\) là hình bình hành

Mà \(\widehat{A}=90^0\Rightarrow AICD\) là hình chữ nhật

\(AI=AD=a\) (hai cạnh kề bằng nhau) \(\Rightarrow AICD\) là hình vuông

 \(\Rightarrow AC\perp DI\) tại E

Lại có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp DI\Rightarrow DI\perp\left(SAE\right)\)

Mà \(DI=\left(SDI\right)\cap\left(ABCD\right)\Rightarrow\widehat{SEA}\) là góc giữa (SDI) và (ABCD)

\(AE=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AD^2+CD^2}=\dfrac{a\sqrt{2}}{2}\)

\(\Rightarrow tan\widehat{SEA}=\dfrac{SA}{AE}=\dfrac{\sqrt{6}}{2}\Rightarrow\widehat{SEA}\approx50^046'\)

Bình luận (1)
PB
Xem chi tiết
CT
29 tháng 7 2017 lúc 2:30

Bình luận (0)