Những câu hỏi liên quan
HL
Xem chi tiết
NL
5 tháng 10 2020 lúc 17:20

a.

\(\Leftrightarrow\frac{2}{\sqrt{5}}sinx-\frac{1}{\sqrt{5}}cosx=\frac{2}{\sqrt{5}}\)

Đặt \(\frac{2}{\sqrt{5}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow sinx.cosa-cosx.sina=cosa\)

\(\Leftrightarrow sin\left(x-a\right)=sin\left(\frac{\pi}{2}-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-a=\frac{\pi}{2}-a+k2\pi\\x-a=\frac{\pi}{2}+a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{2}+2a+k2\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow\sqrt{2}sin\left(3x+\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow sin\left(3x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\3x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
5 tháng 10 2020 lúc 17:22

c.

\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=\frac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\2x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Câu cuối là \(-cosx\) hay \(-cos2x\) bạn?

Bình luận (0)
H24
Xem chi tiết
NL
20 tháng 9 2020 lúc 21:42

a/

\(\Leftrightarrow1+cos2x+cos3x+cosx=0\)

\(\Leftrightarrow2cos^2x+2cos2x.cosx=0\)

\(\Leftrightarrow2cosx\left(cosx+cos2x\right)=0\)

\(\Leftrightarrow2cosx\left(2cos^2x+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

b/

\(\Leftrightarrow2sin3x.cosx+sin3x=2cos3x.cosx+cos3x\)

\(\Leftrightarrow sin3x\left(2cosx+1\right)-cos3x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left(sin3x-cos3x\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(3x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

Bình luận (0)
NL
20 tháng 9 2020 lúc 21:44

c/

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x=1-cos4x\)

\(\Leftrightarrow cos6x+cos2x-2cos4x=0\)

\(\Leftrightarrow2cos4x.cos2x-2cos4x=0\)

\(\Leftrightarrow2cos4x\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
AH
Xem chi tiết
NL
16 tháng 4 2019 lúc 21:38

a/

\(\left(\frac{sin2x}{cos2x}-\frac{sinx}{cosx}\right)cos2x=\left(\frac{sin2x.cosx-cos2x.sinx}{cos2x.cosx}\right).cos2x\)

\(=\frac{sin\left(2x-x\right)}{cosx}=\frac{sinx}{cosx}=tanx\)

b/

\(2\left(1-sinx\right)\left(1+cosx\right)=2+2cosx-2sinx-2sinxcosx\)

\(=1+sin^2x+cos^2x-2sinx+2cosx-2sinx.cosx\)

\(=\left(1-sinx+cosx\right)^2\)

c/

\(1+cotx+cot^2x+cot^3x=1+cotx+cot^2x\left(1+cotx\right)\)

\(=\left(1+cotx\right)\left(1+cot^2x\right)=\left(1+\frac{cosx}{sinx}\right)\left(1+\frac{cos^2x}{sin^2x}\right)=\frac{sinx+cosx}{sin^3x}\)

d/

\(\frac{cos3x}{sinx}+\frac{sin3x}{cosx}=\frac{cos3x.cosx+sin3x.sinx}{sinx.cosx}=\frac{cos\left(3x-x\right)}{\frac{1}{2}2sinx.cosx}=\frac{2cos2x}{sin2x}=2cot2x\)

Bình luận (0)
H24
Xem chi tiết
NL
12 tháng 10 2020 lúc 0:54

7.

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(\frac{\pi}{4}-x\right).sin\left(\frac{\pi}{4}+x\right)\ne0\\cos\left(\frac{\pi}{4}-x\right)cos\left(\frac{\pi}{4}+x\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow cos2x\ne0\)

Phương trình tương đương:

\(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{2}-\frac{\pi}{4}-x\right)}=cos^44x\)

\(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{4}-x\right)}=cos^24x\)

\(\Leftrightarrow sin^42x+cos^42x=cos^44x\)

\(\Leftrightarrow\left(sin^22x+cos^22x\right)^2-2sin^22x.cos^22x=cos^44x\)

\(\Leftrightarrow1-\frac{1}{2}sin^24x=cos^44x\)

\(\Leftrightarrow2-\left(1-cos^24x\right)=2cos^44x\)

\(\Leftrightarrow2cos^44x-cos^24x-1=0\)

\(\Leftrightarrow\left(cos^24x-1\right)\left(2cos^24x+1\right)=0\)

\(\Leftrightarrow cos^24x-1=0\)

\(\Leftrightarrow sin^24x=0\Leftrightarrow sin4x=0\)

\(\Leftrightarrow2sin2x.cos2x=0\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
12 tháng 10 2020 lúc 0:34

1.

\(cos2x+5=2\left(2-cosx\right)\left(sinx-cosx\right)\)

\(\Leftrightarrow2cos^2x+4=4sinx-4cosx-2sinx.cosx+2cos^2x\)

\(\Leftrightarrow2sinx.cosx-4\left(sinx-cosx\right)+4=0\)

Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)

Pt trở thành:

\(1-t^2-4t+4=0\)

\(\Leftrightarrow t^2+4t-5=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-5\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
12 tháng 10 2020 lúc 0:35

2.

\(\Leftrightarrow\left(sinx-1\right)^2+1=sin^23x\)

Ta có \(VT\ge1\) trong khi \(VP\le1\) với mọi x

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sinx-1=0\\sin^23x=1\end{matrix}\right.\) \(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\)

3.

\(\Leftrightarrow-2cos2x.sinx-2sin2x=2\sqrt{2}\)

\(\Leftrightarrow cos2x.sinx+sin2x=-\sqrt{2}\)

Ta có:

\(VT^2=\left(cos2x.sinx+sin2x.1\right)^2\le\left(cos^22x+sin^22x\right)\left(sin^2x+1\right)\le1\left(1+1\right)=2\)

\(\Rightarrow VT\ge-\sqrt{2}\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}sinx=1\\cos2x=sinx.sin2x\end{matrix}\right.\) (ko tồn tại x thỏa mãn)

Vậy pt vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
TY
Xem chi tiết
HM
Xem chi tiết
VD
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết