gpt:x2-3x+2=0
Giai phương trình sau:
a,\(x^2+3x-10=0\) b,\(3x^2-7x+1=0\)
c,\(3x^2-7x+8=0\) d,\(4x^2-12x+9=0\)
e,\(3x^2+7x+2=0\) h,\(x^2-4x+1=0\)
i,\(2x^2-6x+1=0\) j, \(3x^2+4x-4=0\)
a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)
Giải các phương trình sau:
a. \(5x^2+10x=0\)
b. \(3x^2-12=0\)
c. \(3x^2+7=0\)
d. \(12x^2-3x=0\)
Giải phương trình
a) \(x^2-2x+1=0\)
b)\(1+3x+3x^2+x=0\)
c)\(x+x^4=0\)
d)\(x^3-3x^2+3x-1+x\left(x^2-x\right)=0\)
e)\(x^2+x-12=0\)
g)\(6x^2-11x-10=0\)
a) Ta có: \(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)hay x=1
Vậy: S={1}
c) Ta có: \(x+x^4=0\)
\(\Leftrightarrow x\left(x^3+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)=0\)
mà \(x^2-x+1>0\forall x\)
nên x(x+1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy: S={0;-1}
tìm x biết
a) x(x+2) - 3x-6=0
b) ( x^3+3x^2 +3x +1) - 3x^2-3x =0
c) 4x^2 - 25 =0
a) \(x\left(x+2\right)-3x-6=0\)
\(x\left(x+2\right)-3\left(x+2\right)=0\)
\(\left(x+2\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
b) \(\left(x^3+3x^2+3x+1\right)-3x^2-3x=0\)
\(x^3+1=0\)
\(\left(x+1\right)\left(x^2-x+1\right)=0\)
\(x=-1\)
c) \(4x^2-25=0\)
\(\left(2x-5\right)\left(2x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
\(a,x\left(x+2\right)-3x-6=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)\(b,\left(x^3+3x^2+3x+1\right)-3x^2-3x=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-3x^2-3x=0\)
\(\Leftrightarrow x^3+1=0\)
\(\Rightarrow x^3=1\Rightarrow x=1\)
\(c,4x^2-25=0\)
\(\Leftrightarrow\left(2x+5\right)\left(2x-5\right)=0\Rightarrow\left[{}\begin{matrix}2x+5=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
1).(4-3x)(10-5x)=0 2).(7-2x)(4+8x)=0 3).(9-7x)(11-3x)=0
4).(7-14x)(x-2)=0 5).(\(\dfrac{7}{8}\)-2x)(3x+\(\dfrac{1}{3}\))=0 6).3x-2x\(^2\)
7).5x+10x\(^2\)
1.
<=> \(\left[{}\begin{matrix}4-3x=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)
2.
<=>\(\left[{}\begin{matrix}7-2x=0\\4+8x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
3.
<=>\(\left[{}\begin{matrix}9-7x=0\\11-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{7}\\x=\dfrac{11}{3}\end{matrix}\right.\)
4.
<=>\(\left[{}\begin{matrix}7-14x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
5.
<=>\(\left[{}\begin{matrix}\dfrac{7}{8}-2x=0\\3x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{16}\\x=-\dfrac{1}{9}\end{matrix}\right.\)
6,7. ko đủ điều kiện tìm
Cho đường thẳng (d): 3x−4y+5=03x-4y+5=0. Viết phương trình đường thẳng đi qua điểm M(2;1) và song song với đường thẳng d?
A. −3x−4y−2=0-3x-4y-2=0
B. Đáp án khác
C. 3x+4y−2=03x+4y-2=0
D. 3x−4y−2=0
Đường thẳng song song d nên nhận (3;-4) là 1 vtpt
Phương trình:
\(3\left(x-2\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y-2=0\)
c)(x-1)^2=4
d)x^3+2x^2-x-2=0
e)(3x+2)^2-(2x-1)^2=0
a) 3x^2-2x-8=0
b)2x^3-3x^2+3x+8 =0
g) ( x+2)^2-(2x-1)^2=(3x+1)^2
h)2x^2-3=0
i)2x^2+x+3=0
c(x-1)^2=4
x^2-2x+1=4
x^2-2x+1-4=0
x^2-2x-3=0
x^2-3x+x-3=0
x(x-3)+(x-3)=0
(x-3)(x+1)=0
\(\Rightarrow\hept{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
d, x^3+2x^2-x-2=0
x^2(x+2)-(x+2)=0
(x+2)(x^2-1)=0
\(\Rightarrow\hept{\begin{cases}x=-2\\x=+-1\end{cases}}\)
e, (3x+2)^2-(2x-1)^2=0
(3x+2-2x+1)(3x+2+2x-1)=0
(x+3)(5x-1)=0
x+3=0=>x=-3
5x-1=0=>5x=1=>x=1/5
tìm x
a) x2 - 5x = 0
b) 3x ( x - 2 ) + 2( 2 - x ) = 0
c) 5x ( 3x - 1 ) + x( 3x - 1 ) - 2( 3x - 1) = 0
a)
\(\Rightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b)
\(\Rightarrow3x\left(x-2\right)-2\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-2=0\\3x-2=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{3}\end{array}\right.\)
c)
\(\Rightarrow\left(3x-1\right)\left(5x+x-2\right)=0\)
\(\Rightarrow\left(3x-2\right)^2.2=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)