Những câu hỏi liên quan
H24
Xem chi tiết
NT
25 tháng 2 2022 lúc 6:46

Chọn A

Bình luận (0)
46
25 tháng 2 2022 lúc 7:40

A nha

 

Bình luận (0)
BH
Xem chi tiết
H24
22 tháng 5 2017 lúc 22:05

‍‍‍‍

Bình luận (0)
XT
22 tháng 5 2017 lúc 22:34

(P) tiếp xúc với (S) nên P và S phải có điểm chung duy nhất là M

thay tọa độ M vào các phương trình thử thì

Câu A đúng

Bình luận (0)
ND
15 tháng 12 lúc 21:33

A

Bình luận (0)
TA
Xem chi tiết
NL
25 tháng 7 2021 lúc 12:58

Bài này cần có 1 điều gì đó đặc biệt trong các đường - mặt để giải được (nếu ko chỉ dựa trên khoảng cách thông thường thì gần như bất lực). Thường khoảng cách dính tới đường vuông góc chung, thử mò dựa trên nó :)

Bây giờ chúng ta đi tìm đường vuông góc chung d3 của d1; d2, và hi vọng rằng giao điểm C của d3 với (P) sẽ là 1 điểm nằm giữa A và B với A và giao của d1 và d3, B là giao của d2 và d3 (nằm giữa chứ ko cần trung điểm), thường ý tưởng của người ra đề sẽ là như vậy. Khi đó điểm M sẽ trùng C. Còn C không nằm giữa A và B mà nằm ngoài thì đầu hàng cho đỡ mất thời gian (khi đó việc tìm cực trị sẽ rất lâu).

Quy pt d1 và d2 về dạng tham số, gọi A là 1 điểm thuộc d1 thì \(A\left(t+1;t+2;2t\right)\) và B là 1 điểm thuộc d2 thì \(B\left(t'+1;2t'+3;3t'+4\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(t'-t;2t'-t+1;3t'-2t+4\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{u_{d1}}=0\\\overrightarrow{AB}.\overrightarrow{u_{d2}}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t'-t+2t'-t+1+2\left(3t'-2t+4\right)=0\\t'-t+2\left(2t'-t+1\right)+3\left(3t'-2t+4\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}t=0\\t'=-1\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}A\left(1;2;0\right)\\B\left(0;1;1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BA}=\left(1;1-1\right)\)

Phương trình AB hay d3: \(\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=-t\end{matrix}\right.\)

Giao điểm C của d3 và (P): \(2\left(1+t\right)+2\left(2+t\right)-2t-5=0\)

\(\Rightarrow C\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)

Ủa, ko chỉ nằm giữa luôn, mà người ta cho hẳn trung điểm cho cẩn thận :)

Vậy \(M\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)

Bình luận (1)
TL
Xem chi tiết
NL
28 tháng 1 2021 lúc 15:34

a.

Chọn \(C\left(1;1;1\right)\) là 1 điểm thuộc denta

\(\Rightarrow\overrightarrow{AC}=\left(0;-1;4\right)\)

Đường thẳng denta có \(\overrightarrow{u_{\Delta}}=\left(2;-1;1\right)\) là 1 vtcp

\(\Rightarrow\left[\overrightarrow{AC};\overrightarrow{u_{\Delta}}\right]=\left(3;8;2\right)\)

\(\Rightarrow\left(Q\right)\) nhận \(\left(3;8;2\right)\) là 1 vtpt

Phương trình (Q):

\(3\left(x-1\right)+8\left(y-2\right)+2\left(y+3\right)=0\)

b.

Mặt phẳng (P) nhận \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) là 1 vtpt

Ta có: \(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_{\left(P\right)}}\right]=\left(-2;-1;3\right)\)

Mặt phẳng (Q) nhận (2;1;-3) là 1 vtpt

Phương trình (Q):

\(2\left(x-1\right)+1\left(y-2\right)-3\left(z+3\right)=0\)

Bình luận (0)
NL
28 tháng 1 2021 lúc 15:54

c.

Gọi M là giao điểm denta và (P) thì tọa độ M thỏa:

\(-1+2t+2-t+t-3=0\Rightarrow t=1\)

\(\Rightarrow M\left(1;1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_{\Delta}}\right]=\left(2;1;-3\right)\)

Đường thẳng d nhận (2;1;-3) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=1+t\\z=1-3t\end{matrix}\right.\)

d.

Do M thuộc denta nên tọa độ có dạng: \(M\left(-1+2t;2-t;t\right)\)

M là trung điểm AN \(\Rightarrow N\left(-3+4t;2-2t;2t+3\right)\)

N thuộc (P) nên: \(-3+4t+2-2t+2t+3-3=0\Rightarrow t=\dfrac{1}{4}\)

\(\Rightarrow\overrightarrow{MN}=\left(-2+2t;-t;t+3\right)=\left(-\dfrac{3}{2};-\dfrac{1}{4};\dfrac{13}{4}\right)=-\dfrac{1}{4}\left(6;1;13\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=1+6t\\y=2+t\\z=-3+13t\end{matrix}\right.\)

Bình luận (0)
NV
Xem chi tiết
NL
30 tháng 5 2020 lúc 15:42

3.

\(x.f'\left(x\right)+\left(x+1\right)f\left(x\right)=3x^2.e^{-x}\)

\(\Leftrightarrow x.e^x.f'\left(x\right)+\left(x+1\right).e^x.f\left(x\right)=3x^2\)

\(\Leftrightarrow\left[x.e^x.f\left(x\right)\right]'=3x^2\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow x.e^x.f\left(x\right)=\int3x^2dx=x^3+C\)

\(f\left(1\right)=\frac{1}{e}\Rightarrow1.e.\frac{1}{e}=1^3+C\Rightarrow C=0\)

\(\Rightarrow x.e^x.f\left(x\right)=x^3\Rightarrow f\left(x\right)=\frac{x^2}{e^x}\)

\(\Rightarrow f\left(2\right)=\frac{4}{e^2}\)

4.

Gọi (Q) là mặt phẳng chứa d và vuông góc (P)

(Q) nhận \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_d}\right]=\left(-3;2;1\right)\) là 1 vtpt

Phương trình (Q):

\(-3x+2\left(y+1\right)+1\left(z-2\right)=0\Leftrightarrow-3x+2y+z=0\)

d' là hình chiếu của d lên (P) nên là giao tuyến của (P) và (Q) có pt thỏa mãn:

\(\left\{{}\begin{matrix}x+y+z+3=0\\-3x+2y+z=0\end{matrix}\right.\)

\(\Rightarrow d'\) đi qua \(A\left(0;3;-6\right)\) và nhận \(\overrightarrow{u_{d'}}=\left[\overrightarrow{n_{\left(Q\right)}};\overrightarrow{n_{\left(P\right)}}\right]=\left(1;4;-5\right)\) là 1 vtcp

Phương trình chính tắc d': \(\frac{x}{1}=\frac{y-3}{4}=\frac{z+6}{-5}\)

Bình luận (0)
NL
30 tháng 5 2020 lúc 15:24

1/

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x^2+x\end{matrix}\right.\)

\(\Rightarrow I=\left(x^2+x\right)lnx|^3_e-\int\limits^3_e\left(x+1\right)dx=\left(x^2+x\right)lnx|^3_e-\left(\frac{1}{2}x^2+x\right)|^3_e\)

\(=12ln3-\frac{e^2}{2}-\frac{15}{2}\)

2/

Đặt \(z=x+yi\)

\(\left|x+1+\left(y-1\right)i\right|=\left|x+\left(y-3\right)i\right|\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2=x^2+\left(y-3\right)^2\)

\(\Leftrightarrow2x+4y-7=0\Rightarrow x=\frac{7}{2}-2y\)

Ta có: \(A=\left|z-i\right|=\left|x+\left(y-1\right)i\right|=\sqrt{x^2+\left(y-1\right)^2}\)

\(=\sqrt{\left(\frac{7}{2}-2y\right)^2+\left(y-1\right)^2}=\sqrt{5y^2-16y+\frac{53}{4}}=\sqrt{5\left(y-\frac{8}{5}\right)^2+\frac{9}{20}}\ge\sqrt{\frac{9}{20}}\)

\(\Rightarrow\left|z-i\right|_{min}=\sqrt{\frac{9}{20}}\)

Bình luận (0)
TU
Xem chi tiết
NL
19 tháng 6 2020 lúc 23:10

\(\overrightarrow{PQ}=\left(-1;-1;4\right)\)

\(\overrightarrow{n_{\left(P\right)}}=\left(3;2;-1\right)\)

\(\Rightarrow\left[\overrightarrow{PQ};\overrightarrow{n_{\left(P\right)}}\right]=\left(-7;11;1\right)\)

\(\Rightarrow\) Mặt phẳng \(\left(\Delta\right)\) nhận \(\left(-7;11;1\right)\) là 1 vtpt

Phương trình:

\(-7\left(x-2\right)+11\left(y-0\right)+1\left(z+1\right)=0\)

\(\Leftrightarrow-7x+11y+z+15=0\)

Bình luận (0)
NL
19 tháng 6 2020 lúc 23:02

\(\overrightarrow{PQ}=\left(-1;-1;2\right)\)

Mặt phẳng (P) nhận \(\overrightarrow{n}=\left(3;2;-1\right)\) là 1 vtpt

\(\left[\overrightarrow{PQ};\overrightarrow{n}\right]=\left(-3;5;1\right)\)

\(\Rightarrow\) Vtpt của \(\left(\Delta\right)\) phải có dạng \(k\left(-3;5;1\right)\) nên cả 4 đáp án đều ko đúng

Bạn coi lại đề bài (tọa độ P; Q và pt (P), chắc bạn nhầm số liệu chỗ nào đó)

Bình luận (0)
TV
Xem chi tiết
H24
2 tháng 12 2021 lúc 7:22

A

Bình luận (0)
HT
2 tháng 12 2021 lúc 7:23

A

Bình luận (0)
H24
2 tháng 12 2021 lúc 7:25

A

Bình luận (0)
JE
Xem chi tiết
NL
8 tháng 6 2020 lúc 15:58

\(\overrightarrow{AB}=\left(1;1\right)\Rightarrow AB=\sqrt{2}\Rightarrow d\left(C;AB\right)=\frac{2S}{AB}=\frac{3\sqrt{2}}{2}\)

Phương trình AB: \(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)

Theo tính chất trọng tâm: \(d\left(I;AB\right)=\frac{1}{3}d\left(C;AB\right)=\frac{\sqrt{2}}{2}\)

Do I thuộc d nên tọa độ có dạng: \(I\left(3a-8;a\right)\)

\(d\left(I;AB\right)=\frac{\sqrt{2}}{2}\Leftrightarrow\frac{\left|3a-8-a-5\right|}{\sqrt{1+\left(-1\right)^2}}=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|2a-13\right|=1\Rightarrow\left[{}\begin{matrix}a=7\\a=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(13;7\right)\\I\left(10;6\right)\end{matrix}\right.\)

Gọi M là trung điểm AB \(\Rightarrow M\left(\frac{5}{2};-\frac{5}{2}\right)\Rightarrow\left[{}\begin{matrix}\overrightarrow{MI}=\left(\frac{21}{2};\frac{19}{2}\right)\\\overrightarrow{MI}=\left(\frac{15}{2};\frac{17}{2}\right)\end{matrix}\right.\)

\(\overrightarrow{MC}=3\overrightarrow{MI}\Rightarrow\left[{}\begin{matrix}C\left(34;26\right)\\C\left(25;23\right)\end{matrix}\right.\)

Bình luận (0)
HC
Xem chi tiết
NL
24 tháng 1 2019 lúc 22:56

\(IB=IC\Rightarrow I\) là trung điểm BC \(\Rightarrow I\left(0;0;2\right)\)

\(\Rightarrow\left(Q\right)\perp\left(P\right)\)\(IA\in\left(Q\right)\)

\(\overrightarrow{IA}=\left(1;2;-1\right)\) ; \(\overrightarrow{n_{\left(P\right)}}=\left(1;-1;-1\right)\)

\(\Rightarrow\left(Q\right)\) có một vtpt \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{IA};\overrightarrow{n_{\left(P\right)}}\right]=\left(-3;0;-3\right)\)

Chọn \(\overrightarrow{n_{\left(Q\right)}}=\left(1;0;1\right)\Rightarrow\) phương trình mặt phẳng \(\left(Q\right):\)

\(1\left(x-1\right)+0\left(y-2\right)+1\left(z-1\right)=0\Leftrightarrow x+z-2=0\)

Bình luận (0)