Những câu hỏi liên quan
NL
Xem chi tiết
NT
22 tháng 2 2021 lúc 21:22

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

Bình luận (0)
AN
Xem chi tiết
HH
18 tháng 4 2021 lúc 7:45

Để hàm số có đạo hàm tại x=0 phải thỏa mãn 2 điều kiện, đó là hàm số liên tục tại x=0 và có đạo hàm bên trái bằng đạo hàm bên phải

Để hàm số liên tục tại x=0 \(\Leftrightarrow\lim\limits_{x\rightarrow0^+}=\lim\limits_{x\rightarrow0^-}=f\left(0\right)\Leftrightarrow2=2\left(tm\right)\)

\(f'\left(0^+\right)=\lim\limits_{x\rightarrow0^+}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0^+}\dfrac{mx^2+2x+2-2}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x\left(mx+2\right)}{x}=2\)

\(f'\left(0^-\right)=\lim\limits_{x\rightarrow0^-}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0^-}\dfrac{nx+2-2}{x}=n\)

\(\Rightarrow\left\{{}\begin{matrix}m\in R\\n=2\end{matrix}\right.\)

\(f\left(0^+\right)=f\left(0^-\right)\Leftrightarrow n=2\)

 

Bình luận (0)
H24
Xem chi tiết
GH
20 tháng 6 2023 lúc 16:17

Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)

\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)

Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)

Bình luận (1)
PB
Xem chi tiết
CT
25 tháng 2 2018 lúc 2:54

Bình luận (0)
ND
Xem chi tiết
SH
Xem chi tiết
NT
12 tháng 12 2023 lúc 22:37

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\sqrt{2x-4}+3\)

\(=\sqrt{2\cdot2-4}+3=3\)

\(f\left(2\right)=\sqrt{2\cdot2-4}+3=0+3=3\)

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{x+2}{x^2-2mx+m^2+2}\)

\(=\dfrac{2+2}{2^2-2m\cdot2+m^2+2}=\dfrac{4}{m^2-4m+6}\)

Để hàm số f(x) liên tục trên R thì f(x) liên tục tại x=2

=>\(\dfrac{4}{m^2-4m+6}=3\)

=>\(4=3\left(m^2-4m+6\right)\)

=>\(3m^2-12m+18-4=0\)

=>\(3m^2-12m+14=0\)

\(\Leftrightarrow3m^2-12m+12+2=0\)

=>\(3\left(m-2\right)^2+2=0\)(vô lý)

=>\(m\in\varnothing\)

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 4 2019 lúc 17:47

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 9 2019 lúc 16:19

Chọn C.

+) TXĐ: D = R

+) Ta có đạo hàm y’ = ( x2 - 2( m + 3) x + 4) .ex .

Hàm số nghịch biến trên TXĐ khi y’ = ( x2 - 2( m + 3) x + 4) .ex ≤ 0 mọi x

Bình luận (0)
NM
Xem chi tiết
NL
30 tháng 12 2015 lúc 19:12

tick rồi mk giải chi tiết cho

Bình luận (0)
NP
Xem chi tiết