Những câu hỏi liên quan
HD
Xem chi tiết
NT
10 tháng 5 2023 lúc 19:30

1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)

\(\Delta=2^2-4\left(-m-1\right)=4m+8\)

Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0

=>m<=-2

=>\(m\in\left\{-10;-9;...;-2\right\}\)

=>Có 9 số

Bình luận (0)
SK
Xem chi tiết
DY
Xem chi tiết
NL
5 tháng 10 2021 lúc 12:06

Coi lại đề, cái ngoặc thứ 2 ấy, \(m^2-3x+2\) là có vấn đề rồi

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 4 2018 lúc 4:07

Bình luận (0)
TF
Xem chi tiết
NT
31 tháng 12 2017 lúc 19:24

Thay x=2 vào hàm số f(x)=(m+1)x ta được (m+1).2

=> Để f(2)=4 thì m+1 = 4:2 = 2

<=> m = 2-1 = 1

Bình luận (0)
HL
12 tháng 11 2021 lúc 21:08
|x-2/5|=3/4
Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
PN
Xem chi tiết
PB
Xem chi tiết
CT
17 tháng 4 2019 lúc 7:13

Chọn D                 

Xét hàm số 

 Ta có  nên 

Vì vậy  khi t = 2  ⇔ x = 1

Mặt khác   Suy ra  khi x = 1

Vậy  ⇔ m = 3

Cách 2: Tác giả: Nguyễn Trọn  g Lễ; Fb: Nguyễn Trọng Lễ.

Phương pháp trắc nghiệm

Chọn hàm y = f(x) = 4 thỏa mãn giả thiết: hàm số y = f(x) liên tục trên  ℝ  có 

Ta có 

Xét hàm số g(x) liên tục trên đoạn [0;2], g'(x) = 0 ⇔ x = 1. Ta có g(0) = 4 + m, g(1) = 5 + m, g(2) = 4 + m

Rõ ràng g(0) = g(2) < g(1) nên 

Vậy 5 + m = 8 => m = 3

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 4 2019 lúc 17:47

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 6 2017 lúc 2:25

Chọn B

Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:

Từ bảng biến thiên ta có 

Mặt khác 

Suy ra 

Bình luận (0)