Những câu hỏi liên quan
TT
Xem chi tiết
NL
22 tháng 4 2021 lúc 16:23

a. Bạn tự giải

b. Để pt có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)

c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)

 \(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)

\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)

\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)

Bình luận (0)
DT
Xem chi tiết
DT
17 tháng 4 2016 lúc 15:25

trời đất
ai tl hộ mình vs

Bình luận (0)
PP
Xem chi tiết
MY
8 tháng 5 2021 lúc 19:40

phương trình có nghiệm khi:

\(\Delta\)\(\ge\)0<=>[-(2m+1)]^2-4.(m^2-1)\(\ge\)0

<=>(2m+2)^2-4m^2+4\(\ge\)0

<=>4m^2+8m+4-4m^2+4\(\ge\)0

<=>8m+8\(\ge\)0

<=>8(m+1)\(\ge\)0

<=>m\(\ge\)-1

vậy m\(\ge\)-1 thì phương trình có nghiệm

Bình luận (0)
TD
8 tháng 5 2021 lúc 21:33

△≥0⇔(2m+2)^2-4(m^2-1)≥0

⇔4m^2+8m+4-4m^2+4≥0

⇔8m+8≥0

⇔m≥-1

Vậy phương trình có nghiệm khi m≥-1

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 8 2018 lúc 12:15

Phương trình (m – 2)x2 – 2(m + 1)x + m = 0

có a = m – 2; b’ = − (m + 1); c = m

Suy ra Δ ' = [−(m + 1)]2 – (m – 2).m = 4m + 1

TH1: m – 2 = 0 ⇔ m = 2

⇒ −6x + 2 = 0 ⇒ x = 1 3

Với m = 2 thì phương trình có một nghiệm x = 1 3

TH2: m – 2 ≠ 0 ⇔ m2

Để phương trình có nghiệm kép thì:

a ≠ 0 Δ ' = 0 ⇔ m ≠ 2 4 m + 1 = 0 ⇔ m ≠ 2 m = − 1 4 ⇔ m = − 1 4

Vậy m = 2; m = − 1 4 và m = 2 là giá trị cần tìm

Đáp án cần chọn là: B

Bình luận (0)
KN
Xem chi tiết
TD
Xem chi tiết
NT
10 tháng 4 2021 lúc 14:44

a, Thay m = -1 vào phương trình trên ta được 

\(x^2+4x-5=0\)

Ta có : \(\Delta=16+20=36\)

\(x_1=\frac{-4-6}{2}=-5;x_2=\frac{-4+6}{2}=1\)

Vậy với m = -1 thì x = -5 ; x = 1 

b, Vì x = 2 là nghiệm của phương trình trên nên thay x = 2 vào phương trình trên ta được : 

\(4+8+3m-2=0\Leftrightarrow3m=-10\Leftrightarrow m=-\frac{10}{3}\)

Vậy với x = 2 thì m = -10/3 

c, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(16-4\left(3m-2\right)=16-12m+8=4m+8>0\)

\(\Leftrightarrow8>-4m\Leftrightarrow m>-2\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=3m-2\end{cases}}\)

\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow x_1=-4-x_2\)(1) 

suy ra : \(-4-x_2+2x_2=1\Leftrightarrow-4+x_2=1\Leftrightarrow x_2=5\)

Thay vào (1) ta được : \(x_1=-4-5=-9\)

Mà \(x_1x_2=3m-2\Rightarrow3m-2=-45\Leftrightarrow3m=-43\Leftrightarrow m=-\frac{43}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
LL
8 tháng 5 2021 lúc 22:11

undefined

Bình luận (0)
 Khách vãng lai đã xóa
VM
9 tháng 5 2021 lúc 8:05

undefined

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NM
16 tháng 5 2021 lúc 12:12

1) điều kiện của m: m khác 5/2

thế x=2 vào pt1 ta đc:

(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)

lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2

vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2

3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m

 

 

Bình luận (0)
NS
Xem chi tiết
AH
23 tháng 2 2022 lúc 21:54

Lời giải:
a. Với $m=1$ thì pt trở thành:

$x^2-6x+5=0$

$\Leftrightarrow (x-1)(x-5)=0$

$\Leftrightarrow x-1=0$ hoặc $x-5=0$

$\Leftrightarrow x=1$ hoặc $x=5$

b.

Để pt có nghiệm $x=-2$ thì:

$(-2)^2-(m+5)(-2)-m+6=0$

$\Leftrightarrow 4+2(m+5)-m+6=0$

$\Leftrightarrow 20+m=0$

$\Leftrightarrow m=-20$

 

Bình luận (0)
TQ
Xem chi tiết
NT
24 tháng 2 2021 lúc 20:30

Để phương trình có một trong các nghiệm là x=2 nên 

Thay x=2 vào phương trình, ta được:

\(\left(m+2\right)^2-\left(2-3m\right)^2=0\)

\(\Leftrightarrow\left(m+2+2-3m\right)\left(m+2-2+3m\right)=0\)

\(\Leftrightarrow4m\cdot\left(-2m+4\right)=0\)

mà 4>0

nên m(-2m+4)=0

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\-2m+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\-2m=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)

Vậy: Để phương trình có 1 trong các nghiệm là x=2 thì \(m\in\left\{0;2\right\}\)

Bình luận (0)
H24
24 tháng 2 2021 lúc 20:23

`x=2` là nghiệm phương trình nên thay x=2 vào ta có:

`(2+m)^2-(2-3m)^2=0`

`=>(2+m-2+3m)(2+m+2-3m)=0`

`=>4m(4-2m)=0`

`=>m(2-m)=0`

`=>` \left[ \begin{array}{l}m=0\\m=1\end{array} \right.

Bình luận (1)
H24
24 tháng 2 2021 lúc 20:30

$\left[ \begin{array}{l}m=2\\m=0\end{array} \right.$ nhé nãy nhầm =;=

Bình luận (0)