Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có trọng tâm G ( 2 3 ; 0 ) , biết M ( 1 ; 1 ) là trung điểm cạnh BC. Tọa độ đỉnh A là:
A. (2;0)
B. (-2;0)
C. (0;-2)
D. (0;2)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 3); B(-2; 4); C ( 5; 3). Tìm tọa độ trọng tâm G của tam giác đã cho.
A. G 2 ; 10 3 .
B. G 8 3 ; − 10 3 .
C. G 2 ; 5 .
D. G 4 3 ; 10 3 .
Tọa độ trọng tâm G x G ; y G là x G = 1 − 2 + 5 3 = 4 3 y G = 3 + 4 + 3 3 = 10 3 .
Chọn D.
Trong không gian với hệ tọa độ O x y z , cho tam giác ABC có đỉnh C - 2 ; 2 ; 2 và trọng tâm G - 1 ; 2 ; 2 . Tìm tọa độ các đỉnh A, B của tam giác ABC, biết A thuộc mặt phẳng (Oxy) và điểm B thuộc trục cao.
A. A(-1;-1;0), B(0;0;4)
B. A(-1;1;0), B(0;0;4)
C. A(-1;0;1), B(0;0;4)
D. A(-4;4;0), B(0;0;1)
Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có các đỉnh A(-1;0); B(4;0);C(0;m).
Tìm tọa độ trọng tâm G của tam giác ABC theo m. Tìm m để tam giác GAB vuông tại G
Gọi \(\left(x_G;y_G\right)\) là tọa độ của G. Theo công thức tính trọng tâm tam giác, ta có :
\(\begin{cases}x_G=\frac{-1+4+0}{3}=1\\y_G=\frac{0+0+m}{3}=\frac{m}{3}\end{cases}\)
Vậy \(G\left(1;\frac{m}{3}\right)\)
\(\widehat{AGB}=90^0\Leftrightarrow\overrightarrow{BG}\perp AG\Leftrightarrow\overrightarrow{BG}.\overrightarrow{AG}=0\) (1)
\(\overrightarrow{BG}=\left(1-4;\frac{m}{3}-0\right)=\left(-3;\frac{m}{3}\right)\)
\(\overrightarrow{AG}=\left(1+1;\frac{m}{3}-0\right)=\left(2;\frac{m}{3}\right)\)
\(\overrightarrow{BG}.\overrightarrow{AG}=\frac{m^2}{9}-6\) (2)
Thay (2) vào (1) ta có : \(\widehat{AGB}=90^0\Leftrightarrow m^2=54\Leftrightarrow m=\pm3\sqrt{6}\)
Vậy có 2 giá trị cần tìm của m
trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A, có trọng tâm g(4/3;1/3). Phương trình đường thẳng BC là x-2y-4=0, phương trình đường thẳng BG là 7x-4y-8=0. Tìm tọa độ các đỉnh của tam giác ABC
Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có trọng tâm G 2 3 ; 0 , biết M(1;1) là trung điểm cạnh BC. Tọa độ đỉnh A là:
A.(2;0)
B.(-2;0)
C.(0;-2)
D.(0;2)
Trong mặt phẳng với hệ tọa độ Oxy, cho các điểm A( 2;1), B(4;0), C(2; 3).
a) Tìm tọa độ trọng tâm G của tam giác ABC và trung điểm I của cạnh AB.
b) Cho D (m ; 2). Tìm m để ba điểm A, B, D thẳng hàng.
c) Tính cos của góc B trong tam giác ABC.
a: \(\left\{{}\begin{matrix}x_G=\dfrac{2+4+2}{3}=\dfrac{8}{3}\\y_G=\dfrac{1+0+3}{3}=\dfrac{4}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_I=\dfrac{2+4}{2}=3\\y_I=\dfrac{1+0}{2}=\dfrac{1}{2}\end{matrix}\right.\)
Mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có A(2;4); B(5;1); C(-1;-2) Phép tịnh tiến T B C → biến tam giác ABC thành tam giác A’B’C’. Tọa độ trọng tâm của tam giác A’B’C’ là
A. (-4;2)
B. (4;2)
C. (4;-2)
D. (-4;-2)
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(-2;4), B(4;1), C(-2;-1). Tìm tọa độ trực tâm H tam giác.
vecto AH=(x+2;y-4); vecto BC=(-6;-2)
vecto BH=(x-4;y-1); vecto AC=(0;-5)
Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0
=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6
=>x+2=1 và y=1
=>x=-1 và y=1
Trong mặt phẳng Oxy cho tam giác ABC biết A(2;1);B(7;4);C( 6;9). Gọi G là trọng tâm ABC. 1/ Tìm tọa độ trọng tâm G của tam giác ABC. 2 Với M(–2:19). Chứng minh ba điểm A, G, M thẳng hàng.