Những câu hỏi liên quan
PB
Xem chi tiết
CT
17 tháng 6 2018 lúc 10:49

Đáp án D

Bình luận (0)
H24
Xem chi tiết
NL
7 tháng 11 2021 lúc 22:26

Dạng: \(....f'\left(x\right)+...f\left(x\right)=...\)

Ý tưởng luôn là đưa về đạo hàm của tổng sau đó lấy nguyên hàm 2 vế.

Thêm bớt sao cho vế trái biến thành: \(u\left(x\right).f'\left(x\right)+u'\left(x\right).f\left(x\right)\) là được

So sánh nó với vế trái đề bài, dư ra \(u'\left(x\right)\) ở trước \(f\left(x\right)\) nên ta chia nó (vế kia vẫn ko quan tâm)

Được: \(\dfrac{u\left(x\right)}{u'\left(x\right)}.f'\left(x\right)+f\left(x\right)\)

So sánh nó với đề bài, vậy ta cần tìm hàm \(u\left(x\right)\) sao cho:

\(\dfrac{u\left(x\right)}{u'\left(x\right)}=x\left(x+1\right)\)

Nhưng để thế này ko lấy nguyên hàm được, phải nghịch đảo 2 vế:

\(\dfrac{u'\left(x\right)}{u\left(x\right)}=\dfrac{1}{x\left(x+1\right)}\)

Giờ thì lấy nguyên hàm: \(\int\dfrac{u'\left(x\right)}{u\left(x\right)}dx=\int\dfrac{dx}{x\left(x+1\right)}\Leftrightarrow ln\left|u\left(x\right)\right|=ln\left|\dfrac{x}{x+1}\right|+C\)

Tới đây suy được \(u\left(x\right)=\dfrac{x}{x+1}\) \(\Rightarrow\) vế trái cần có dạng: 

\(\dfrac{x}{x+1}f'\left(x\right)+\dfrac{1}{\left(x+1\right)^2}f\left(x\right)\)

Nhìn vào đây là xong rồi. Bài toán sẽ được giải như sau:

Chia 2 vế giả thiết cho \(\left(x+1\right)^2\):

\(\Rightarrow\dfrac{x}{x+1}f'\left(x\right)+\dfrac{1}{\left(x+1\right)^2}f\left(x\right)=\dfrac{x}{x+1}\)

\(\Leftrightarrow\left(\dfrac{x}{x+1}+f\left(x\right)\right)'=\dfrac{x}{x+1}\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow\dfrac{x}{x+1}+f\left(x\right)=\int\dfrac{x}{x+1}dx=\int\left(1-\dfrac{1}{x+1}\right)dx=x-ln\left|x+1\right|+C\)

\(\Rightarrow f\left(x\right)=x-\dfrac{x}{x+1}-ln\left|x+1\right|+C=\dfrac{x^2}{x+1}-ln\left|x+1\right|+C\)

Thay \(x=1\)

\(\Rightarrow f\left(1\right)=\dfrac{1}{2}-ln2+C\Rightarrow-2ln2=\dfrac{1}{2}-ln2+C\)

\(\Rightarrow C=-ln2-\dfrac{1}{2}\)

\(\Rightarrow f\left(x\right)=\dfrac{x^2}{x+1}-ln\left|x+1\right|-ln2-\dfrac{1}{2}\)

\(\Rightarrow f\left(2\right)=...\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 9 2018 lúc 11:16

Chọn A.

Đặt  u = ln x + x 2 + 1 , d v = d x ta được

F(x)=x ln x + x 2 + 1 - x 2 + 1   + C

 

Vì F(0) = 1 nên C = 2

Vậy 

Bình luận (0)
MN
Xem chi tiết
NL
12 tháng 11 2021 lúc 22:30

\(\Leftrightarrow\dfrac{f'\left(x\right)}{f\left(x\right)}+2x=lnx\Rightarrow\dfrac{f'\left(x\right)}{f\left(x\right)}=lnx-2x\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow\int\dfrac{f'\left(x\right)}{f\left(x\right)}dx=\int\left(lnx-2x\right)dx\)

\(\Rightarrow ln\left|f\left(x\right)\right|=x\left(lnx-1\right)-x^2+C\)

Thay \(x=1\)

\(\Rightarrow ln\left|f\left(1\right)\right|=-2+C\Rightarrow C=2\)

\(\Rightarrow ln\left|f\left(x\right)\right|=x\left(lnx-1\right)-x^2+2\)

\(\Rightarrow\left|f\left(x\right)\right|=e^{x\left(lnx-1\right)-x^2+2}\)

\(\Rightarrow\left|f\left(2\right)\right|\)

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
17 tháng 9 2019 lúc 8:49

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 10 2018 lúc 3:59

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 2 2019 lúc 16:11

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 7 2018 lúc 3:07

Bình luận (0)