Cho hàm số f(x) = 2mx + lnx. Tìm m để nguyên âm F(x) của f(x) thỏa mãn F(1) = 0 và F(2) = 2 +2ln2
Cho hàm số f x = 2 m x + ln x . Tìm m để nguyên âm F(x) của f(x) thỏa mãn F 1 = 0 và F 2 = 2 + 2 ln 2
A. m = 1 2
B. m = 2
C. m = 0
D. m = 1
Cho hàm số y=f(x) liên tục trên R\ {0; -1} thỏa mãn f(1) =-2ln2 và
\(x\left(x+1\right)f'\left(x\right)+f\left(x\right)=x^2+x\) . Tính f(2)
Dạng: \(....f'\left(x\right)+...f\left(x\right)=...\)
Ý tưởng luôn là đưa về đạo hàm của tổng sau đó lấy nguyên hàm 2 vế.
Thêm bớt sao cho vế trái biến thành: \(u\left(x\right).f'\left(x\right)+u'\left(x\right).f\left(x\right)\) là được
So sánh nó với vế trái đề bài, dư ra \(u'\left(x\right)\) ở trước \(f\left(x\right)\) nên ta chia nó (vế kia vẫn ko quan tâm)
Được: \(\dfrac{u\left(x\right)}{u'\left(x\right)}.f'\left(x\right)+f\left(x\right)\)
So sánh nó với đề bài, vậy ta cần tìm hàm \(u\left(x\right)\) sao cho:
\(\dfrac{u\left(x\right)}{u'\left(x\right)}=x\left(x+1\right)\)
Nhưng để thế này ko lấy nguyên hàm được, phải nghịch đảo 2 vế:
\(\dfrac{u'\left(x\right)}{u\left(x\right)}=\dfrac{1}{x\left(x+1\right)}\)
Giờ thì lấy nguyên hàm: \(\int\dfrac{u'\left(x\right)}{u\left(x\right)}dx=\int\dfrac{dx}{x\left(x+1\right)}\Leftrightarrow ln\left|u\left(x\right)\right|=ln\left|\dfrac{x}{x+1}\right|+C\)
Tới đây suy được \(u\left(x\right)=\dfrac{x}{x+1}\) \(\Rightarrow\) vế trái cần có dạng:
\(\dfrac{x}{x+1}f'\left(x\right)+\dfrac{1}{\left(x+1\right)^2}f\left(x\right)\)
Nhìn vào đây là xong rồi. Bài toán sẽ được giải như sau:
Chia 2 vế giả thiết cho \(\left(x+1\right)^2\):
\(\Rightarrow\dfrac{x}{x+1}f'\left(x\right)+\dfrac{1}{\left(x+1\right)^2}f\left(x\right)=\dfrac{x}{x+1}\)
\(\Leftrightarrow\left(\dfrac{x}{x+1}+f\left(x\right)\right)'=\dfrac{x}{x+1}\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow\dfrac{x}{x+1}+f\left(x\right)=\int\dfrac{x}{x+1}dx=\int\left(1-\dfrac{1}{x+1}\right)dx=x-ln\left|x+1\right|+C\)
\(\Rightarrow f\left(x\right)=x-\dfrac{x}{x+1}-ln\left|x+1\right|+C=\dfrac{x^2}{x+1}-ln\left|x+1\right|+C\)
Thay \(x=1\)
\(\Rightarrow f\left(1\right)=\dfrac{1}{2}-ln2+C\Rightarrow-2ln2=\dfrac{1}{2}-ln2+C\)
\(\Rightarrow C=-ln2-\dfrac{1}{2}\)
\(\Rightarrow f\left(x\right)=\dfrac{x^2}{x+1}-ln\left|x+1\right|-ln2-\dfrac{1}{2}\)
\(\Rightarrow f\left(2\right)=...\)
Một nguyên hàm F(x) của hàm số f ( x ) = ln x + x 2 + 1 thỏa mãn F(0) = 1. Chọn kết quả đúng
Chọn A.
Đặt u = ln x + x 2 + 1 , d v = d x ta được
F(x)=x ln x + x 2 + 1 - x 2 + 1 + C
Vì F(0) = 1 nên C = 2
Vậy
Cho hàm số f(x) thỏa mãn f'(x) + 2x.f(x) = f(x).lnx với f(x)≠ 0, ∀x và f(1) =1. Khi đó \(\left|f\left(2\right)\right|\) bằng ?
\(\Leftrightarrow\dfrac{f'\left(x\right)}{f\left(x\right)}+2x=lnx\Rightarrow\dfrac{f'\left(x\right)}{f\left(x\right)}=lnx-2x\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow\int\dfrac{f'\left(x\right)}{f\left(x\right)}dx=\int\left(lnx-2x\right)dx\)
\(\Rightarrow ln\left|f\left(x\right)\right|=x\left(lnx-1\right)-x^2+C\)
Thay \(x=1\)
\(\Rightarrow ln\left|f\left(1\right)\right|=-2+C\Rightarrow C=2\)
\(\Rightarrow ln\left|f\left(x\right)\right|=x\left(lnx-1\right)-x^2+2\)
\(\Rightarrow\left|f\left(x\right)\right|=e^{x\left(lnx-1\right)-x^2+2}\)
\(\Rightarrow\left|f\left(2\right)\right|\)
Tìm m để hàm số y= f(x)= \(\left(\sqrt{m^2+4}-m\right)x^2-2mx+5\)thỏa mãn điều kiện f(0)= f(1)
Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn f(1) = 0, ∫ 0 1 f ' x 2 = 3 2 - 2 ln 2 và ∫ 0 1 f x x + 1 2 d x = 2 ln 2 - 3 2 . Tích phân ∫ 0 1 f x d x bằng
A. .
B. .
C. .
D. .
Cho hàm số f(x) xác định trên R\{-1;2} thỏa mãn f ' x = 3 x 2 - x - 2 , f - 2 = 2 ln 2 + 2 và f - 2 - 2 f 0 = 4 . Giá trị của biểu thức f - 3 + f 1 2 bằng
A. 2 + ln 5
B. 2 + ln 5 2
C. 2 - ln 2
D. 1 + ln 5 2
Cho hàm số f x = 2 mx + lnx . Tìm giá trị thực của tham số m để nguyên hàm F x của f x thỏa mãn F 1 = 0 và F 2 = 2 + 2 ln 2
A. m = 2
B. m = 1
C. m = 0
D. m = 1 2
Cho hàm số y=f(x) liên tục, không âm trên R thỏa mãn f ( x ) . f ' ( x ) = 2 x f ( x ) 2 + 1 và f(0)=0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=f(x) trên đoạn [1;3] lần lượt là:
A. M=20;m=2
B. M = 4 11 ; m = 3
C. M = 20 ; m = 2
D. M = 3 11 ; m = 3