Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ R . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm phân thực biệt.
A. m > e
B. 0 < m ≤ 1 .
C. 0 < m < e .
D. 1 < m < e .
Cho hàm số f x = 2 m x + ln x . Tìm m để nguyên âm F(x) của f(x) thỏa mãn F 1 = 0 và F 2 = 2 + 2 ln 2
A. m = 1 2
B. m = 2
C. m = 0
D. m = 1
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ ℝ . Biết f 0 = 1 và 2 - x f x - f ' x = 0 . Tìm tất cả các giá trị thực của tham số m để phương trình f x = m có hai nghiệm thực phân biệt.
A. m < e 2
B. 0 < m < e 2
C. 0 < m ≤ e 2
D. m > e 2
Cho hàm số y=f(x) liên tục, không âm trên R thỏa mãn f ( x ) . f ' ( x ) = 2 x f ( x ) 2 + 1 và f(0)=0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=f(x) trên đoạn [1;3] lần lượt là:
A. M=20;m=2
B. M = 4 11 ; m = 3
C. M = 20 ; m = 2
D. M = 3 11 ; m = 3
Cho hàm số f ( x ) = ln x + x 2 + 1 Với mỗi số nguyên dương m đặt S m = f ( - m ) + f ( - m + 1 ) + . . + ( 0 ) + . . + f ( m - 1 ) Có bao nhiêu giá trị của m để phương trình 8 x - 3 . 4 x - S m = 0 có hai nghiệm thực phân biệt
A. 27
B. 2
C. 28
D. 1
Cho hàm số f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tìm tất cả các giá trị thực của tham số m để hàm số y=f(|x|) có 5 cực trị
A. - 10 < m < 5 4
B. - 2 < m < 5
C. - 2 < m < 5 4
D. 5 4 < m < 2
Cho hàm số y = f(x) thỏa mãn l i m x → - ∞ f x = - 1 và l i m x → + ∞ f x = m Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = 1 f x + 2 có duy nhất một tiệm cận ngang.
A. m = -1
B. m = 2
C. m ∈ - 1 ; - 2
D. m ∈ - 1 ; 2
Cho hàm số y = f(x) có đồ thị f’(x) như hình vẽ. Có bao nhiêu giá trị nguyên dương của tham số m để hàm số g x = f x 2 + x - 1 + 480 m x 2 + x + 2 nghịch biến trên (0; 1)?
A. 4
B. 6
C. 7
D. 8