Những câu hỏi liên quan
PB
Xem chi tiết
CT
5 tháng 12 2019 lúc 2:05

Đáp án D

Ta có  y ' = cos x − m .

Hàm số nghịch biến trên R

⇔ y ' ≤ 0 , ∀ x ∈ ℝ ⇒ cos x − m ≤ 0 ∀ x ∈ ℝ ⇔ cos x ≤ m ∀ x ∈ ℝ ⇒ m ≥ M a x ℝ cos x = 1.

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
24 tháng 10 2019 lúc 12:15

C

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 10 2018 lúc 16:35

Chọn C

Bình luận (1)
AN
Xem chi tiết
NL
22 tháng 6 2021 lúc 6:53

1.

\(y'=m-3cos3x\)

Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)

\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)

\(\Leftrightarrow m\ge3\)

Bình luận (0)
NL
22 tháng 6 2021 lúc 6:56

2.

\(y'=1-m.sinx\)

Hàm đồng biến trên R khi và chỉ khi:

\(1-m.sinx\ge0\) ; \(\forall x\)

\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)

- Với \(m=0\) thỏa mãn

- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)

\(\Rightarrow m\ge-1\)

- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)

\(\Rightarrow m\le1\)

Kết hợp lại ta được: \(-1\le m\le1\)

Bình luận (0)
NC
Xem chi tiết
PB
Xem chi tiết
CT
25 tháng 4 2018 lúc 8:02

Chọn A

Đặt  ta có: 

Ta có 

Do m ∈ Z nên ta xét hai trường hợp sau

+TH1:  thì hàm số đồng biến trên [-1;1].

Xét 

+TH2:  thì hàm số nghịch biến trên [-1;1]

Xét  

Vậy 

Vậy tập S có 4 phần tử.

Nên chọn A.

Nhận xét của Admin tổ 4:

Cách khác liên quan đến bản chất Max, Min của hàm số:

Để giá trị lớn nhất của hàm số y =  sin   x   +   m 3   -   2 sin   x   thuộc đoạn [-2;2]

Bình luận (0)
DT
Xem chi tiết
NT
11 tháng 7 2023 lúc 19:30

Chọn C

Bình luận (0)
H24
Xem chi tiết