Những câu hỏi liên quan
HA
Xem chi tiết
VD
18 tháng 3 2022 lúc 8:42

a, ĐKXĐ:\(\left\{{}\begin{matrix}x^2-1\ne0\\x+1\ne0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm1\\x\ne-1\\x\ne1\end{matrix}\right.\Leftrightarrow x\ne\pm1\)

b, \(P=\dfrac{2x^2}{x^2-1}+\dfrac{x}{x+1}-\dfrac{x}{x-1}\)

\(\Rightarrow P=\dfrac{2x^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{x^2-x}{\left(x+1\right)\left(x-1\right)}-\dfrac{x^2+x}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x^2+x^2-x-x^2-x}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x^2-2x}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x}{x+1}\)

c, Thay x=2 vào P ta có:

\(P=\dfrac{2x}{x+1}=\dfrac{2.2}{2+1}=\dfrac{4}{3}\)

Bình luận (0)
DT
18 tháng 3 2022 lúc 8:47

Bài `1:`

`a)`

Để `P` có nghĩa thì:

`{(x^2-1\ne0),(x+1\ne0),(x-1\ne0):}`

`<=>x\ne+-1`

`b)`

`P=(2x^2)/(x^2-1)+x/(x+1)-x/(x-1)(x\ne+-1)`

`P=(2x^2)/((x-1)(x+1))+(x.(x-1))/((x+1)(x-1))-(x.(x+1))/((x-1)(x+1))`

`P=(2x^2+x^2-x-x^2-x)/((x-1)(x+1))`

`P=(2x^2-2x)/((x-1)(x+1))`

`P=(2x.(x-1))/((x-1)(x+1))=2x/(x+1)`

`c)`

Với `x=2`

`P=(2.2)/(2+1)=4/3`

Bình luận (0)
HB
Xem chi tiết
AH
29 tháng 12 2023 lúc 15:22

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.

Bình luận (0)
LL
Xem chi tiết
CB
Xem chi tiết
H24
Xem chi tiết
DL
30 tháng 12 2022 lúc 20:25

\(P=\dfrac{\dfrac{x}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{1}{x^2-4}}\)

a)

Để giá trị của biểu thức P được xác định, thì :

 \(\left[{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne2\\x\ne-2\\x\ne-2;2\end{matrix}\right.\)

Vậy ĐKXĐ của biểu thức P là : \(x\ne\left\{2;-2\right\}\)

b)

\(P=\dfrac{\dfrac{x}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{1}{x^2-4}}=\left(\dfrac{x}{x-2}-\dfrac{x-2}{x+2}\right):\dfrac{1}{x^2-4}=\left(\dfrac{x\left(x+2\right)-\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\dfrac{x^2-4}{1}\)

\(=\dfrac{x^2+2x-x^2+2x-4}{x^2-4}.\dfrac{x^2-4}{1}=\dfrac{4x-4}{x^2-4}.\dfrac{x^2-4}{1}=4x-4\)

c)

Để : 

\(P=0\Rightarrow4x-4=0\)

\(\Rightarrow4\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

Vậy.....

 

Bình luận (0)
PA
Xem chi tiết
DH
12 tháng 8 2018 lúc 22:00

a) Đề phải là: \(A=\left(x-2\right)\left(x+2\right)-\left(x-1\right)\left(x^2+2x+1\right)-x^2\left(4-x\right)\) chứ bạn

 \(\Rightarrow A=x^2-2^2-\left(x^3-1\right)-4x^2+x^3\)

           \(=x^2-4-x^3+1-4x^2+x^3\) 

            \(=-3x^2-3=-3\left(x^2+1\right)\)

b) A = 0 \(\Leftrightarrow-3\left(x^2+1\right)=0\)

             \(\Leftrightarrow x^2+1=0\)

              \(\Leftrightarrow x^2=-1\)

Vì \(x^2\ge0\left(\forall x\right)\) \(\Rightarrow x\in\varnothing\)

Vậy x vô nghiệm nếu A có giá trị bằng 0

P/s: không chắc lắm

Bình luận (0)
TV
13 tháng 8 2018 lúc 9:55

đề sao cũng đúng mà

Bình luận (0)
TV
13 tháng 8 2018 lúc 10:01

a)  \(A=\left(x-2\right)\left(x+2\right)-\left(x-1\right)\left(x^2-2x+1\right)-x^2\left(4-x\right)\)

=> \(A=x^2-4-\left(x-1\right)^3-4x^2+x^3\)

=> \(A=x^2-4-x^3+3x^2-3x+1-4x^2+x^3\)

=> \(A=-3x-3\)

b)  Cho A=0

=> \(A=-3x-3=0\)

=> \(-3x=3\)

=> \(x=-1\)

Bình luận (0)
H24
Xem chi tiết
HH
Xem chi tiết
NT
24 tháng 7 2021 lúc 20:03

a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(=\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x^2-x-2\right)}{x^2}\)

\(=\dfrac{x\left[x^2-4x+4+4x\right]}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x+1}{2x}\)

b) Thay \(x=\dfrac{1}{2}\) vào P, ta được:

\(P=\dfrac{1}{2}+1=\dfrac{3}{2}\)

Bình luận (0)
ML
Xem chi tiết
XO
21 tháng 8 2023 lúc 0:11

ĐKXĐ : \(x\ne0;x\ne\pm1\)

a) Bạn ghi lại rõ đề.

b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)

c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)

Không tồn tại Min P \(\forall x\inℝ\)

Bình luận (0)
H24
Xem chi tiết