Những câu hỏi liên quan
NH
Xem chi tiết
AH
23 tháng 5 2022 lúc 0:36

Lời giải:

TXĐ: (-\infty; -1)\cup (-1;+\infty)$
$y'=\frac{1}{(x+1)^2}-2$

$y'>0\Leftrightarrow (x+1)^2< \frac{1}{2}\Leftrightarrow \frac{-1}{\sqrt{2}}-1< x< \frac{1}{\sqrt{2}}-1$

$y'< 0\Leftrightarrow (x+1)^2> \frac{1}{2}\Leftrightarrow x> \frac{1}{\sqrt{2}}-1$ hoặc $x< \frac{-1}{\sqrt{2}}-1$
Vậy hàm số:

Đồng biến trên $(\frac{-1}{\sqrt{2}}-1; \frac{1}{\sqrt{2}}-1)$ và nghịch biến trên $(\frac{1}{\sqrt{2}}-1; +\infty)\cup (-\infty; \frac{-1}{\sqrt{2}}-1)$

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 6 2017 lúc 11:30

Hàm số y = |x + 1|

Nếu x + 1 ≥ 0 hay x ≥ –1 thì y = x + 1.

Nếu x + 1 < 0 hay x < –1 thì y = –(x + 1) = –x – 1. 

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

+ Tập xác định: R

+ Trên (–∞; –1), y = x + 1 đồng biến.

Trên (–1 ; +∞), y = –x – 1 nghịch biến.

Ta có bảng biến thiên :

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số gồm hai phần:

Phần thứ nhất : Nửa đường thẳng y = x + 1 giữ lại các điểm có hoành độ ≥ –1.

Phần thứ hai : nửa đường thẳng y = –x – 1 giữ lại các điểm có hoành độ < –1.

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

Bình luận (0)
NT
Xem chi tiết
NH
15 tháng 10 2015 lúc 22:38

ta tính \(y'=3x^2-4x+1\)

\(y'=0\Rightarrow3x^2-4x+1=0\Rightarrow x=1;x=\frac{1}{3}\)

ta có 

ta có trong khoảng 2 nghiệm thì y' cùng dấu với hệ số a, ngoài khoảng 2 nghiệm trái dấu với hệ số a

suy ra f'(x)>0 với \(x\in\left(-\infty;\frac{1}{3}\right)\cup\left(1;+\infty\right)\) suy ra hàm số  đồng biến trên \(\left(-\infty;\frac{1}{3}\right)\cup\left(1;+\infty\right)\)

lại có f'(x)<0 với \(x\in\left(\frac{1}{3};1\right)\) suy ra hàm số nghịch biến trên \(\left(\frac{1}{3};1\right)\)

Bình luận (0)
NV
Xem chi tiết
H24
Xem chi tiết
NT
16 tháng 11 2021 lúc 22:17

Vì hàm số này đồng biến khi x>0 nên nếu x trong khoảng (0;1) thì hàm số đồng biến

Bình luận (0)
TA
Xem chi tiết
NT
14 tháng 10 2021 lúc 21:26

a: TXĐ: D=R

Khi \(x\in D\Rightarrow-x\in D\)

\(f\left(-x\right)=-\left(-x\right)^2-2\cdot\left(-x\right)+3\)

\(=-x^2+2x+3\)

\(\Leftrightarrow f\left(-x\right)\ne f\left(x\right)\ne-f\left(x\right)\)

Vậy: Hàm số không chẵn không lẻ

 

Bình luận (1)
PB
Xem chi tiết
CT
30 tháng 12 2017 lúc 8:16

Bình luận (0)
NK
Xem chi tiết
TL
11 tháng 8 2015 lúc 1:36

a) TXĐ: D = [0; + \(\infty\))

\(y'=1+\frac{1}{2\sqrt{x}}\) > 0 với mọi x thuộc D

BBT:  x y' y 0 +oo + 0 +oo

Từ BBT => Hàm số đồng biến trên D ;

y đạt cực tiểu bằng 0 tại x = 0

Hàm số không có cực đại

b) TXĐ : D = = [0; \(\infty\))

\(y'=1-\frac{1}{2\sqrt{x}}\)

\(y'=0\) <=> \(2\sqrt{x}=1\) <=> \(x=\frac{1}{4}\)

x y' y 0 +oo + 0 +oo -1/4 1/4 0 -

Từ BBT: Hàm số đồng biến trên (1/4; + \(\infty\)); nghịch biến trên (0;1/4)

Hàm số đạt cực tiểu = -1/4 tại  x = 1/4

Hàm số không có cực đại

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 4 2019 lúc 15:36

Chọn B

Đặt 

Bài toán quy về tìm giá trị lớn nhất của hàm số y = f(t) trên đoạn [-2;0].

Từ bảng biến thiên ta có giá trị lớn nhất của hàm số y = f(t) trên đoạn [-2;0] là 3.

Vậy giá trị lớn nhất của hàm số f(sin x -1) bằng 3.

Bình luận (0)