Cho số phức z thoả mãn |z|=3 và | z 2 + 9 | = 9 3 . Tính P=|z+ z |+|z-z ̄ |.
A. 3 + 3 3
B. 3 + 3
C. 3 + 3 2
D. 6 + 3
Cho số phức z = a + b i a , b ∈ ℝ thoả mãn z+3+i-|z|(2+i)=0 và |z|>1. Tính P=a+2b.
A. P = -1
B. P = 8
C. P = 7
D. P = 5
Cho số phức z thoả mãn |z|=2 và | z 2 + 1 | = 4 . Tính | z + z | + | z - z | .
A. 16.
B. 7 + 3 .
C. 3 + 2 2 .
D. 3 + 7 .
Cho số phức z thoả mãn |z-1-i|=1 Khi 3|z|=2|z-4-4i| đạt giá trị lớn nhất. Tính |z|
A. 2 - 1
B. 2
C. 2 + 1
D. 3
Đặt
Khi đó
Dấu bằng đạt tại
Chọn đáp án B.
Cho số phức z thoả mãn z - 3 - 4 i = 5 và biểu thức P = z + 2 2 - z - i 2 đạt giá trị lớn nhất. Môđun của số phức z bằng
A.10.
B. 5 2
C.13.
D. 10 .
Cho số phức Z thoả mãn (1+2i)z-5= 3i tìm số phức liên hợp z 2/ cho số phức z=a+bi(a, b thuộc R) thoả mãn 3z-5z ngan -6+10i=0 .tính a-b
\(\left(1+2i\right)z-5=3i\Leftrightarrow\left(1+2i\right)z=5+3i\)
\(\Rightarrow z=\dfrac{5+3i}{1+2i}=\dfrac{11}{5}-\dfrac{7}{5}i\)
\(\Rightarrow\overline{z}=\dfrac{11}{5}+\dfrac{7}{5}i\)
2.
Đề câu này là: \(3z-5\overline{z}-6+10i=0\) đúng không nhỉ?
Cho N là điểm biểu diễn số phức z thỏa mãn \(\dfrac{z+2-3i}{z-3}=1-i\) và M là điểm biểu diễn số phức z' thoả mãn \(\left|z'-2-i\right|+\left|z'+3-3i\right|=\sqrt{29}\). Tìm giá trị nhỏ nhất của MN
Cho số phức z thoả mãn z - 3 - 4 i = 5 . Gọi M và m là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = z + 2 2 - z - i 2 . Tính môđun của số phức w = M + m i
Cho số phức z thoả mãn đồng thời hai điều kiện z - 3 - 4 i = 5 và biểu thức M = z + 2 2 - z - i 2 đạt giá trị lớn nhất. Môđun của số phức z - 2 - i bằng
A. 5
B. 9
C. 25
D. 5
Cho số phức z thoả mãn 2 z + 1 2 = z - i 2 . Tính môđun của số phức z+2+i.
A.1
B.3
C.4
D.2