x/2=y/3=z/4 và 2x+y-3z=10
bài 10 a)x/2=y/3 và 4x-3y=-2
b)2x=5y và x+y=-42
bài 11 a)x/3=y/4=z/6 và x+2y-3z=-14
b)x/5=y/6;y/8=z/7 và x=y-z=138
c)x=y/3=z/5 và 15x-5y=3z=45
dx/2=y/3;y/2=z/3 vâ x-2y+3z=19
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
Tìm x,y,z
1, x:y:z=5:7:10 và 2x+y-z=-21
2, X:y:z=3:4:6 và 4y-2x+3z=-56
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{7}=\frac{z}{10}=\frac{2x}{10}=\frac{y}{7}=\frac{z}{10}$
$=\frac{2x+y-z}{10+7-10}=\frac{-21}{7}=-3$
$\Rightarrow x=-3.5=-15; y=-3.7=-21; z=-3.10=-30$
2.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{2x}{6}=\frac{4y}{16}=\frac{3z}{18}$
$=\frac{4y-2x+3z}{16-6+18}=\frac{-56}{28}=-2$
$\Rightarrow x=-2.3=-6; y=-2.4=-8; z=-2.6=-12$
Tìm x,y,z:
a,x:y:z=3:5:(-2) và 5x-y+3z=124
b,x/3=y/4=z/5 và 2x2+2y2-3z2= -100
c,x-1/2=y-2/3=z-3/4 và 2x+ 3y -z=50
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
a, Theo đề bài ta có :\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{\left(-2\right)}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{\left(-2\right)}\)=\(\frac{5x}{15}\)=\(\frac{3z}{\left(-6\right)}\)=\(\frac{5x-y+3z}{15-5+\left(-6\right)}\)=\(\frac{124}{4}\)= 31 (Vì \(5x-y+3z=124\))
Suy ra : \(x=31\times3=93\)
\(y=31\times5=155\)
\(z=31\times\left(-2\right)=-62\)
Vậy .................
Tìm x; y; z biết rằng:
a)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x + 3y -z = 50
b) 2x = 3y = 5z và x + y - z = 95
c) \(\frac{2x}{3}=\frac{5y}{4}=\frac{3z}{5}\)và -2x + y - 3z = 216
a) x/3=y/4=z/5 và 2x + 3y + 5z = 86
b) x/3=y/4; y/6=z/8 và 3x - 2y - z = 13
c) x/3=y/7=z/2 và 2x^2 + y^2+3z^2 = 316
Bài 1
Tìm x , y, z biết :
a) \(\frac{x}{6}=\frac{y}{-5}=\frac{z}{4}\)và 2x + y - 3z = 35
b) \(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\)và x + y - z = 10
c) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x - 2y + 3z = -10
d) 5.x = 3 .y= 2.z và x + y +z = 62
giúp mình giaiar bài này với
a ) x-1 / 2 = y-2 / 3 = z-3 / 4 và x - 2y + 3z = 14
b) x : y : z = 3 : 4 : 5 và 2x^2 + 2y^2 - 3z^2 = - 100
\(x-\frac{1}{2}=y-\frac{2}{3}=z-\frac{3}{4}\)va \(x-2y+3z=14\)
\(\frac{\Rightarrow\left(x-1\right)}{2}=\frac{\left(-2y+4\right)}{-6}=\frac{\left(3z-9\right)}{12}\)
\(=\frac{\left(x-1-2y+4+3z-9\right)}{\left(2-6+12\right)}\)
\(\Rightarrow-\frac{16}{8}=-2\)
\(\frac{\Rightarrow\left(y-2\right)}{2}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(y-2\right)}{3}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(x-3\right)}{4}=-2\Leftrightarrow z-3=-8\Leftrightarrow z=-5\)
\(b)\)
Theo đề ra:
\(x:y:z=3:4:5\)
\(2x^2+2y^2-3z^2=-100\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
\(\Leftrightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất dãy tỷ số bằng nhau:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=4\Leftrightarrow x=12\\\frac{y}{4}=4\Leftrightarrow y=16\\\frac{z}{5}=4\Leftrightarrow z=20\end{cases}}\)
Tìm x, y, z:
a, x/3 = y/4 = z/5 và -2x mủ 2 + y mủ 2 - 3z mủ 2 = - 77
b, x/10 = y/6 = z/24 và 5x + y - 2z = 28
c, x/3 = y/4 ; y/5 = z/7 và 2x + 3y - z = 186
Câu a bạn Nguyễn Thị Anh đã trả lời, mình trả lời câu c.
b) Câu này bạn ghi sai đề rồi!
c) Ta có: x/3 = y/4 => x/15 = y/20
y/5 = z/7 => y/20 = z/28
=> x/15 = y/20 = z/28
Áp dụng tính chất dãy tỉ số bằng nhau:
=> x/15 = y/20 = z/28 = 2x/30 = 3y/60 = 2x + 3y - z / 30 + 60 - 28 = 186/62 = 3
x/15 = 3 => x = 15 . 3 = 45
y/20 = 3 => y = 20 . 3 = 60
z/28 = 3 => z = 28 . 3 = 84
Vậy x = 45; y = 60; z = 84.
Tìm x,y và z ( nếu có) biết:
x/y =2/5;y/z=5/3 và 2x - y + 3z = 16
x/5=y/3 ; y/5=z/4 và x - y + z = 22
\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)
\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`
`-> x/2=y/5=z/3=2`
`-> x=2*2=4, y=2*5=10, z=2*3=6`
`x/5=y/3 -> x/25=y/15`
`y/5=z/4 -> y/15=z/12`
`x/25=y/15, y/15=z/12`
`-> x/25=y/15=z/12`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`
`-> x/25=y/15=z/12=1`
`-> x=25, y=15, z=12`
a: x/y=2/5
=>x/2=y/5
y/z=5/3
=>y/5=z/3
=>x/2=y/5=z/3
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)
=>x=4; y=10; z=6
b: x/5=y/3
=>x/25=y/15
y/5=z/4
=>y/15=z/12
=>x/25=y/15=z/12
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)
=>x=25; y=15; z=12
Để giải hệ phương trình này, ta sẽ sử dụng phương pháp thay thế.
Trước hết, ta sẽ giải hai phương trình đầu tiên để tìm x, y, và z.
Từ \( \frac{x}{3} = \frac{y}{5} \), ta có thể suy ra:
\[ x = \frac{3y}{5} \]
Từ \( \frac{y}{2} = \frac{z}{4} \), ta có thể suy ra:
\[ y = \frac{2z}{4} = \frac{z}{2} \]
Bây giờ, ta có thể thay vào phương trình cuối cùng để tìm giá trị của x, y, và z.
Thay x và y vào phương trình:
\[ -2(\frac{3y}{5}) + y - z = -22 \]
\[ -\frac{6y}{5} + y - z = -22 \]
\[ y - \frac{6y}{5} - z = -22 \]
\[ \frac{5y - 6y}{5} - z = -22 \]
\[ -\frac{y}{5} - z = -22 \]
\[ -\frac{y}{5} = -22 + z \]
\[ y = 5(22 - z) \]
Thay y vào phương trình \( x = \frac{3y}{5} \), ta có:
\[ x = \frac{3(5(22 - z))}{5} \]
\[ x = 3(22 - z) \]
Thay y vào phương trình \( y = \frac{z}{2} \), ta có:
\[ z = 2y \]
Bây giờ, ta sẽ thay x, y, và z vào phương trình cuối cùng để tìm giá trị của z:
\[ -2x + y - z = -22 \]
\[ -2(3(22 - z)) + 5(22 - z) - z = -22 \]
\[ -2(66 - 2z) + 110 - 5z - z = -22 \]
\[ -132 + 4z + 110 - 6z = -22 \]
\[ -22 - 2z = -22 \]
\[ -2z = 0 \]
\[ z = 0 \]
Khi biết z = 0, ta có thể tìm giá trị của x và y:
\[ x = 3(22 - 0) = 66 \]
\[ y = 5(22 - 0) = 110 \]
Vậy, giải hệ phương trình ta được:
\[ x = 66, y = 110, z = 0 \]