Những câu hỏi liên quan
LH
Xem chi tiết
PB
Xem chi tiết
CT
26 tháng 9 2018 lúc 15:49

Bình luận (0)
PT
Xem chi tiết
VH
Xem chi tiết
NT
18 tháng 12 2021 lúc 0:00

d: Để hai đường thẳng song song thì m=1

Bình luận (1)
MA
Xem chi tiết
NT
11 tháng 11 2021 lúc 23:20

b: Thay x=4 vào (d1), ta được:

\(y=\dfrac{1}{2}\cdot4=2\)

Vì (d3)//(d2) nên a=-1

Vậy: (d3): y=-x+b

Thay x=2 và y=4 vào (d3), ta được:

b-2=4

hay b=6

Bình luận (0)
H24
Xem chi tiết
NT
17 tháng 5 2023 lúc 10:37

loading...

Bình luận (0)
PH
Xem chi tiết
NT
31 tháng 12 2023 lúc 20:33

Để (d1) cắt (d2) tại một điểm nằm trên trục tung thì

\(\left\{{}\begin{matrix}m-2\ne-1\\m^2+2=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\m^2=1\end{matrix}\right.\Leftrightarrow m=-1\)

Bình luận (0)
DH
Xem chi tiết
TH
4 tháng 11 2016 lúc 20:53

Xác định hệ số a, biết rằng đồ thị của hàm số y=ax đi qua điểm A(6;2).Điểm B(-9;3), điểm C(7;-2) có thuộc đồ thị hàm số không ? Tìm trên đồ thị của hàm số điểm D có hoành độ bằng -4,điểm E có tung độ bằng 2

Bình luận (0)
HD
2 tháng 12 2016 lúc 19:49

1,04 m

tk mk nha

mk sẽ tk lại

hứa mà

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 4 2018 lúc 12:06

Bình luận (0)
H24
Xem chi tiết
NT
11 tháng 1 2024 lúc 8:53

a: \(\lim\limits_{x\rightarrow-\dfrac{3m}{2}}\dfrac{x+3}{2x+3m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\dfrac{3m}{2}}2x+3m=0\\\lim\limits_{x\rightarrow-\dfrac{3m}{2}}x+3=\dfrac{-3m}{2}+3\end{matrix}\right.\)

=>x=-3m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\)

Để tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) đi qua M(3;-1) thì \(-\dfrac{3m}{2}=3\)

=>-1,5m=3

=>m=-2

b: \(\lim\limits_{x\rightarrow-m}\dfrac{2x-3}{x+m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-m}2x-3=-2m-3\\\lim\limits_{x\rightarrow-m}x+m=0\end{matrix}\right.\)

=>x=-m là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)

Để x=-2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\) thì -m=-2

=>m=2

c: \(\lim\limits_{x\rightarrow\dfrac{2}{b}}\dfrac{ax+1}{bx-2}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow\dfrac{2}{b}}ax+1=a\cdot\dfrac{2}{b}+1\\\lim\limits_{x\rightarrow\dfrac{2}{b}}bx-2=b\cdot\dfrac{2}{b}-2=0\end{matrix}\right.\)

=>Đường thẳng \(x=\dfrac{2}{b}\) là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\)

=>2/b=2

=>b=1

=>\(y=\dfrac{ax+1}{x-2}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow+\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)

=>Đường thẳng y=a là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{ax+1}{x-2}\)

=>a=3

 

 

Bình luận (0)