Những câu hỏi liên quan
DN
Xem chi tiết
NL
5 tháng 3 2022 lúc 23:24

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-\left(x+1\right)}{2x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x^2+1}-\left(x+1\right)\right)\left(\sqrt{x^2+1}+x+1\right)}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-2x}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-2}{\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\dfrac{-2}{\left(0-1\right)\left(\sqrt{1}+1\right)}=1\)

a. \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\lim\limits_{x\rightarrow2}\dfrac{1}{x+2}=\dfrac{1}{4}\)

b. \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}=\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}\)

Do \(\lim\limits_{x\rightarrow3^-}\left(-x-3\right)=-6< 0\)

\(\lim\limits_{x\rightarrow3^-}\left(3-x\right)=0\) và \(3-x>0;\forall x< 3\)

\(\Rightarrow\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}=-\infty\)

Bình luận (0)
H24
Xem chi tiết
H24
18 tháng 11 2023 lúc 21:03

`a)lim_{x->+oo}[x+1]/[x^2+x+1]`

`=lim_{x->+oo}[1/x+1/[x^2]]/[1+1/x+1/[x^2]]`

`=0`

`b)lim_{x->+oo}[3x+1]/[3x^2-x+5]`

`=lim_{x->+oo}[3/x+1/[x^2]]/[3-1/x+5/[x^2]]`

`=0`

`c)lim_{x->-oo}[3x+5]/[\sqrt{x^2+x}]`

`=lim_{x->-oo}[3+5/x]/[-\sqrt{1+1/x}]`

`=-3`

`d)lim_{x->+oo}[-5x+1]/[\sqrt{3x^2+1}]`

`=lim_{x->+oo}[-5+1/x]/[\sqrt{3+1/[x^2]}]`

`=-5/3`

Bình luận (0)
H24
Xem chi tiết
NT
10 tháng 11 2023 lúc 20:24

a: \(\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{x^2-5x+6}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{x+3}{x-2}=\dfrac{3+3}{3-2}=\dfrac{6}{1}=6\)

b: \(\lim\limits_{x\rightarrow5}\dfrac{x^2-5x}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{x\left(x-5\right)}{x-5}=\lim\limits_{x\rightarrow5}x=5\)

c: \(\lim\limits_{x\rightarrow-3}\dfrac{x^2-3x}{2x^2+9x+9}\)

\(=\lim\limits_{x\rightarrow-3}\dfrac{x\left(x-3\right)}{2x^2+6x+3x+9}\)

\(=\lim\limits_{x\rightarrow-3}\dfrac{\left(-3\right)\left(-3-3\right)}{\left(-3+3\right)\left(2\cdot\left(-3\right)+3\right)}\)

\(=\lim\limits_{x\rightarrow-3}\dfrac{18}{0\cdot\left(-3\right)}=-\infty\)

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 10 2017 lúc 13:44

Đáp án đúng : B

Bình luận (0)
AN
Xem chi tiết
AH
22 tháng 2 2023 lúc 18:49

Lời giải:

a. \(\lim\limits_{x\to 1+}(x^3+x+1)=3>0\)

\(\lim\limits_{x\to 1+}(x-1)=0\) và $x-1>0$ khi $x>1$

\(\Rightarrow \lim\limits_{x\to 1+}\frac{x^3+x+1}{x-1}=+\infty\)

b.

 \(\lim\limits_{x\to -1+}(3x+2)=-1<0\)

\(\lim\limits_{x\to -1+}(x+1)=0\) và $x+1>0$ khi $x>-1$

\(\Rightarrow \lim\limits_{x\to -1+}\frac{3x+2}{x+1}=-\infty\)

c.

\(\lim\limits_{x\to 2-}(x-15)=-17<0\)

\(\lim\limits_{x\to 2-}(x-2)=0\) và $x-2<0$ khi $x<2$

\(\Rightarrow \lim\limits_{x\to 2-}\frac{x-15}{x-2}=+\infty\)

 

 

 

Bình luận (0)
H24
Xem chi tiết
NT
10 tháng 11 2023 lúc 22:15

a: \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+8}-4}{x-4}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x+8-16}{\sqrt{2x+8}+4}\cdot\dfrac{1}{x-4}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2\left(x-4\right)}{\sqrt{2x+8}+4}\cdot\dfrac{1}{x-4}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2}{\sqrt{2x+8}+4}=\dfrac{2}{\sqrt{2\cdot4+8}+4}\)

\(=\dfrac{2}{\sqrt{8+8}+4}=\dfrac{2}{4+4}=\dfrac{2}{8}=\dfrac{1}{4}\)

b: \(\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{\sqrt{4x+1}-3}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{\dfrac{4x+1-9}{\sqrt{4x+1}+3}}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{4\left(x-2\right)}\cdot\left(\sqrt{4x+1}+3\right)\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x+2\right)\left(\sqrt{4x+1}+3\right)}{4}\)

\(=\dfrac{\left(2+2\right)\left(\sqrt{4\cdot2+1}+3\right)}{4}=\sqrt{9}+3=6\)

c: \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-\sqrt{x+2}}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\dfrac{4-x-2}{2+\sqrt{x+2}}}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-x}\cdot\left(\sqrt{x+2}+2\right)\)

\(=\lim\limits_{x\rightarrow2}\left(-\sqrt{x+2}-2\right)\)

\(=-\sqrt{2+2}-2=-2-2=-4\)

Bình luận (0)
JE
Xem chi tiết
NL
8 tháng 3 2021 lúc 23:40

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)\Rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=2\)

Bình luận (0)
TL
Xem chi tiết
QL
Xem chi tiết
HM
22 tháng 9 2023 lúc 21:18

a) \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 4x + 3} \right) = \mathop {\lim }\limits_{x \to 2} {x^2} - \mathop {\lim }\limits_{x \to 2} \left( {4x} \right) + 3 = {2^2} - 4.2 + 3 =  - 1\)

b) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 5x + 6}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {x - 3} \right)\left( {x - 2} \right)}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \left( {x - 2} \right) = \mathop {\lim }\limits_{x \to 3} x - 2 = 3 - 2 = 1\)

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt x  + 1}} = \frac{1}{{\sqrt 1  + 1}} = \frac{1}{2}\)

Bình luận (0)
QL
Xem chi tiết
HM
22 tháng 9 2023 lúc 21:27

a) \(\mathop {\lim }\limits_{x \to  - 3} \left( {4{x^2} - 5x + 6} \right) = 4.{\left( { - 3} \right)^2} - 5.\left( { - 3} \right) + 6 = 57\)

b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {2x - 1} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {2x - 1} \right) = 2.2 - 1 = 3\)

c) \(\begin{array}{c}\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x  - 2}}{{{x^2} - 16}} = \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x  - 2}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x  - 2}}{{\left( {\sqrt x  - 2} \right)\left( {\sqrt x  + 2} \right)\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{1}{{\left( {\sqrt x  + 2} \right)\left( {x + 4} \right)}}\\ = \frac{1}{{\left( {\sqrt 4  + 2} \right)\left( {4 + 4} \right)}} = \frac{1}{{32}}\end{array}\)

Bình luận (0)